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1. Introduction

This report provides a detailed final summary of research conducted under
NASA Grant NAG-1-657 entitled,“Reynolds Stress Closure in Jet Flows Using
Wave Models.”

The goal of the research has been to develop turbulence closure schemes, free
of model constants, that predict the development of jet flows. In particular, the
unsteady characteristics at the large scale were to be modeled and the models were
to be applicable to jets of arbitrary geometry. In addition, the modeling scheme
had to be computationally inexpensive. This eliminated the possibility of Direct

Numerical Simulations or Large Eddy Simulations.

The models developed under this program have achieved the goals of being free
of model constants and being computationally inexpensive but the closure schemes
were not applied to jet flows. Instead, the closure scheme was developed for a
two—dimensional mixing layer. Extensions of the closure scheme to circular and
non—circular jets flows is the subject of ongoing research activity under separate
funding. However, the numerical procedures to apply the closure scheme to non-
circular jets have been developed. This permits the local characteristics of the
large scale structures to be calculated. In addition, the shock cell structure in

non—circular jets, operating off-design, has been calculated.

The modeling procedure is described in detail in the subsequent chapters. How-
ever it may be summarized as the response to the following questions.
1) If the time-averaged flow properties are known, can the most likely unsteady
flow field be deduced?
2) If the time-averaged turbulent stresses associated with this unsteady flow field
are calculated, are they compatible with the original time-averaged velocity

and temperature fields?

The answer to both these questions appears to be “yes” for the free shear flows
examined. Such flows are dynamically unstable and are dominated by their most
unstable, linear instabilities. The advantage of such an approach is that it models

the unsteady flow field directly using a phenomenological model. It has no need to



resort to model constants to close the higher order equations that are encountered
in traditional models. However, the models have yet to be tested in more complex
configurations. It is likely that models such as the one described in this report
will act as guides for the modeling procedures in conventional Reynolds—averaged
models. This will enable more physically realistic models to be incorporated in

these closure schemes.

The chapters of this report represent either publications or manuscripts sub-
mitted for publication by the principal investigator and the research assistants. The
three research assistants who have worked on this project each earned a Ph.D. de-
gree. Many details of the research are given in their theses. The student names and

their thesis titles are:

Roy S. Baty, “Reynolds Stress Closure in Jet Flows Using Instability Wave
Modeling,” Ph.D. thesis, Department of Aerospace Engineering, The Pennsyl-
vania State University, 1989.

Thonse R. S. Bhat, “Linear Models for the Shock Cell Structure of Super-
sonic Jets with Noncircular Exit Geometries,” Ph.D. thesis, Department of

Aerospace Engineering, The Pennsylvania State University, 1990.

William W.-W. Liou, “Weakly Nonlinear Models for Turbulent Free Shear
Flows,” Ph.D. thesis, Department of Aerospace Engineering, The Pennsylvania

State University, 1990.

The outline of this report is as follows. Chapter 3 contains a description of
the weakly nonlinear turbulence model developed by Liou. An essential part of
the application of such a closure scheme to general geometry jets is the solution of
the local hydrodynamic stability equation for a given jet cross-section. Chapter 4
describes the conformal mapping schemes used by Baty to map such geometries onto
a simple computational domain. Chapter 5 describes Baty’s solution of the stability
problem for circular, elliptic and rectangular geometries. In Chapter 6 Bhat’s use
of linear models for the shock cell structure in non—circular jets is given. The
Appendices contain reprints of papers also published during this study. Appendix
I describes the instability of elliptic jets. Appendix II provides a technique for



predicting the shock cell structure in non—circular jets using a vortex sheet model.

Finally, Appendix III describes the resonant interaction between twin supersonic
jets.

Each of the component parts of this research program provide progress toward
the prediction of the development of jets from arbitrary geometry nozzles including
their unsteady turbulent structure at the large scale. It also provides the basis for

the prediction of their near-field pressure fluctuations and their radiated noise.
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The principal investigator and research assistants gratefully acknowledge the
support of NASA Langley Research Center. In particular, the guidance and flex-
ibility of the technical monitor, Dr. J. M. Seiner are appreciated. In addition,
experimental data has been provided by Messrs. M. Ponton and J. Manning. The
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WAVE MODELS FOR TURBULENT
FREE SHEAR FLOWS

W. W. Liou and P. J. Morris
The Pennsylvania State University
University Park, PA 16802

ABSTRACT

New predictive closure models for turbulent free shear flows are presented in this paper.
They are based on an instability wave description of the dominant Jarge-scale structures
in these flows using a quasi-linear theory. Three models have been developed to study
the structural dynamics of turbulent motions of different scales in free shear flows. The
local characteristics of the large-scale motions are described using linear theory. Their
amplitude is determined from an energy integral analysis. The models have been applied
to the study of an incompressible free mixing layer. In all cases, predictions are made for the
development of the mean flow field. In the last model , predictions of the time—-dependent
motion of the large-scale structure of the mixing region are made. The predictions show
good agreement with experimental observations. ' ’

IINTRODUCTION

Though the presence and importance of large-scale coherent structures to the mixing
process in free shear flows has been recognized for many years, turbulence models that
incorporate these observations have been very limited. The use of direct numerical or large
eddy simulations provide a detailed prediction of the large-scale motions in low and high
Reynolds number turbulent fiows respectively. But these predictions are computationally
expensive and are still limited in general to simple boundary conditions. The present
model makes use of experimental observations in excited turbulent flows or conditional
sampling measurements to provide a simple model of the large scale motions which is
computationally inexpensive.

Most current turbulent flow calculations for practical applications use the long time-
averaged Navier-Stokes equations. Turbulence models are needed to evaluate the unknown
correlation terms, the Reynolds stresses, that appear when the statistical averaging process
is applied to the nonlinear convective terms in the equations. This is the closure problem.
There are closure models of various orders that have been prd’jb'd'se_&: These ‘models are
usually based on the notion that the high-order moments of fluctuations can be repre-
sented reasonably well as functionals of moments of lower order. Work in this regard is
voluminous and will not be elaborated on here. Some models are guite successful and
have become very popular in engineering flow calculations. However, they usually involve
a large number of model constants determined by comparison with experimental data.
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Thus, these models are not entirely predictive but, in some ways, represent a sophisticated
correlation of experimental data.

The present models are based on observations of large-scale coherent structures in free
mixing Jayers. Brown and Roshko (1974), among others, observed that these orderly
motions dominate the dynamics and the structure of free shear fiows like wakes, jets and
mixing layers. The structures appear in both low- and high—speed fiows. They have also
been observed in many flow geometries.

This paper is concerned with new, predictive turbulence models for free shear flows. The
models simulate the propagating large-scale structures as spatially travelling instability
waves. In this paper, we focus on the validation of the wave models as well as a determina-
tion of their limitations. Predictions are made for 2 two—dinensional incompressible free
mixing layer. This will provide guidelines for applications of the models to more complex
configurations.

II.THE WAVE MODELS

The wave models presented here are used to make 2 direct calculation of the large—
scale, characteristic structures. The fundamental idea is that the large-scale structures
may be modeled using a quasi-linear theory. The local characteristics of these structures
may be described by linear instability theory. This has been demonstrated by the ex-
periments of Gaster, Kit and Wygnanski (1985) and Petersen and Samet (1988), among
others. In their experiments they compared predictions of the amplitude and phase of
the axial velocity fluctuations, based on linear stability theory, with phase-averaged mea-
surements in an excited shear layer and a jet. The agreement between predictions and
experiment was very good though only normalized distributions of amplitude and phase,
not the absolute amplitude, were predicted. This close agreement between the predic-
tions of linear stability theory and the properties of the large-scale coherent sturctures has
formed the basis for theories of turbulent mixing and supersonic jet noise generation and
radiation. For example, Tam and Morris (1980) and Tam and Burton (1984) predicted
the noise radiation from instability waves in supersonic shear layers and jets and obtained
very good agreement with experiment. Their analyses showed that the behavior of the
large-scale disturbances could be modeled satisfactorily using a quasi-linear theory, even
though the waves were not infinitesimal in magnitude. However, an important element of
these calculations, the velocity profiles of the mean flow, that are needed for the linear
stability calculations, are obtained from experiments. Their approaches provide a closure,
but are not predictive. The models proposed here establish a complete closure model us-
ing a simple quasi-linear theory for the large-scale motion. In the present model both
the mean fiow and the time—dependent turbulent motions at the large-scale are obtained
simultaneously as a solution.

II.a Analysis



Turbulent flows generally contain broadband fluctuations and are traditionally treated
as random processes. These processes are then described by statistical averages. The
observation and justification of the occurrence of orderly and coherent large-scale turbulent
fAuctuations in turbulent free flows encourage an interpretation of these turbulent flows
using a quasi-deterministic description.

In light of the existence of coherent structures, it is appropriate to decompose an
instantaneous flow property into three parts. That is,

fi=Fi+fi+f£ (1)

The fuctuation with respect to the mean quantity, Fy, is separated into two components:
one representing the dominant large-scale motion, fi, and the other representing the small-
scale fluctuation, f;. The mean flow component is obtained from a long time-average of
its instantaneous value and is given by

T

= 1 -
J T ), J
A short time-average may be defined by
- 1. (T
<fix>=FK+ i =% Jidt (3)
Ty Jo

where T, is much smaller than T3, but much larger than the characteristic time scale of
the background small-scale fluctuation. The mean fiow represents an average over many
realizations for a long period of time and thus is the profile that is most probably seen by the
large-scale structures which occur randomly in space and time. In this approach, mean
fiow properties and large-scale fluctuations can be obtained explicitly. The small-scale
turbulence which provides additional mixing at smaller scales compared to the mean and
the large-scale motions is treated separately. The governing equations for the mean flow can
be derived by long time-averaging the Navier-Stokes equations. Equations governing the
large-scale fluctuations can then be obtained by subtracting the resulting mean equations
from the short time-averaged Navier-Stokes equations. The governing equations for the
mean flow are

7.
%.1 — 0 (4.)
I
8U; 8 : 3P 1 8
2P L (s v = ™ 4.
Uiz, 5z, B wi;) 8z; | Re01,0z; (4.0)

where the interactions between motions of disparate scales are assumed to be negligible.
The equations can be simplified further by applying the boundary-layer approximation.
For two-dimensional flows, the resulting equations are

7 7
U Y _ . (5.0)

dz By
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U oU 0 — — 0 d — 1 82U
Ug; + V'g; + a(uz—vz) + a(ﬁ) + a—y(u'v') = -}%—6'—6-52— (5.5)
In order to close the governing equations, the long time-averaged one-point correlations
of the large- and small-scale motions in the mean equation have to be provided. Here, the
large-scale motions are calculated by solving their governing equations. These equations
can be obtained by subtracting the mean equations from the short time-averaged Navier-
Stokes equations:

Ju;
-é? =0 (6.a)
O Ow  OU 0 oy = 9P
ot ’51,' T oz, T oz (w%; uity) = oz
1 8211.,' 1 -
- — w S —ulul 6.b
* Re 0z;0z; 6:5,-(< Uity > u‘uJ) (6.6)

Gaster et al. (1985) argued that the nonlinear terms can be neglected and showed that
the local characteristics of the large-scale fluctuations in mixing layers can be described
surprisingly well by linear theory. In fact, some weakly nonlinear solutions in hydrodynamic
stability, for example, Stuart (1958), assume that the Jocal shapes of the finite amplitude
disturbances are those obtained by linear theory. Therefore, it is assumed here that locally
the large-scale turbulent structures may be described by linear analysis and that their
behavior is only weakly nonlinear. Hence, all the nonlinear interaction terms are neglected
in the present formulation.

The next assumption is that molecular viscous effects are unimportant. Davis and
Moore (1985), in a numerical study of plane and axisymmetric mixing layers, found that
the effect of decreasing the Reynolds number is to smear the vorticities without altering
the dynamics of the large-scale structures. This phenomenon can also be observed in the
experimental results of Brown and Roshko (1974) and Konrad (1976). In a mixing layer
calculation, Tam and Chen (1979) showed that for a Reynolds number over 300, based
on the local width, the unstable waves are not affected by the Reynolds number. In fact,
increasing the Reynolds number produces more small-scale structures without significantly
altering the dynamics of the structure of large scales. Viscous effects are thus of minor
importance in the development of the large-scale structure and are, therefore, neglected in
the present approach. Computationally, this approximation also means a huge saving in
computer time.

The equations for the large-scale fluctuations can be simplified further by assuming
that the mean fiow is locally parallel. For free shear flows like mixing layers, wakes and jets,
mean fiows diverge slowly and this renders the locally parallel flow assumption applicable.
For two-dimensional problems, the equations governing the large-scale unsteady turbulent
motions, after introducing the above three physical assumptions, become

éﬁ'—(?E—O (7.a)
dz = dy )
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ou N ou ‘Uau _ dp (7.b)

5 " Vey "8z ez
b o _ O (7.0)
at_‘ 8z Oy '

These equations, when solved, provide not only the information that is necessary to close
the system of equations for the mean flow, but also the behavior of the Jarge-scale turbulent
motion.

Since the coefficients in equation (7) are functions of y only, a simple separable form
of solutions may be assumed,

{u, v, p} = Az) R{|&(y),(v),5(v)) ezp [i(ez — wi)]} (8)

where bold face quantities indicate a complex solution whose real parts lead to real quan-
tities and ® denotes the real part of a complex number. a is a complex wavenumber and
w represents the frequency. These are the normal mode representations generally used in
hydrodynamic stability. The amplitude function A(z) appears as a parameter for local
calculations and is determined by the large-scale kinetic energy equation. This weakly
nonlinear approach is usually referred to as a »wave envelop” method. In free shear flows,
Jarge-scale structures occur randomly in space and time and propagate downstream n
the form of quasi-periodic travelling waves. The wave-like solutions, equation (8), thus
represent physical phenomena as well. The resulting equations obtained by substituting
these expressions into the linearized inviscid equations for the large-scale disturbances can
be reduced further to a second order ordinary differential equation in terms of ¥ :

~

<
[

{(aU—w)(:iiy2 - a?) ——a%}

(9)

Equation (9) is the incompressible Rayleigh equation, Rayleigh (1880).

For a given mean velocity profile and appropriate homogeneous boundary conditions,
equation (9) forms an eigenvalue problem. In the present analysis, the complex wavenurn-
ber, a, of the disturbance is the eigenvalue. Note that the wavenumber appears nonlinearly
in the problem. In addition to a traditional shooting procedure, three global approximation
methods are applied in the solution of equation. These include the Chebyshev spectral
approximation, a psuedospectral Chebyshev collocation method and a finite difference
method.

The amplitude function A(z) introduced in equation (8) along with the conventional
normal mode representation determines the amplitudes of the coherent fluctuations. In the
present analysis, the amplitude is determined by the kinetic energy equations for the large-
scale fluctuations. Therefore, instead of growing exponentially, exp(—2a;). as would be
predicted by linear theory, the development of the amplitude function is determined by the
conservation of the kinetic energy of the large structures. Equations for the kinetic energy
of the large-scale fiuctuations can be obtained by multiplying the momentum equations

o



for u;, equation (6.b), by u, and long time-averaging the resulting equation. The energy

equation for the large-scale fluctuations can be written as:

. Ok oU; 0 — U, . ou,
— = Ul — — T o+ —=) - (- < ! >)—
UJ an u u’] 8z,~ azj (qu 0 ) ( u‘u] )a:ﬁj
i —m—mm—
- — (u; < ui-u;» >) + viscous terms (10)

oz,

where k = %E.—u__,' Since the large-scale structures are inviscid in nature, the terms involving
viscosity are negligible. Production of the large structure kinetic energy is positive if —uyuj
and AU;/8z; are of the same sign, negative otherwise. Regions of “negative production”
associated with the large-scale coherent structures have been observed, Komori and Udea
(1985) and Hussain and Zaman (1985). Conventional eddy viscosity models fail to predict
this phenomenon. Since the basic assumption of these models is that momentum exchanges
are proportional to local mean fiow gradients. That is, eddy viscosity models predict co-
gradient momentum transport, or positive production of turbulent kinetic energy by their
nature. In fact, the dominant structures in free shear flows are of large scale. The large-
scale structures transport fluid elements across the flow unmixed and this is not directly
related to Jocal mean flow gradients. Energy is subsequently extracted from the Jarge-scale
motion and dissipated at the high frequency end of the wave number spectrum. The terms
containing the residual stress tensor, — < u:-u;- >, describe the draining of energy from
the waves. Very little information, experimentally or numerically, is currently available
regarding these stresses.

In the following section, three models are derived from the weakly nonlinear theory
described above. The weakly nonlinear theory is formulated for turbulent free shear flows
in general. As a test of the theory, these three models are derived for turbulent free mixing
layers. The large-scale structures observed in mixing layers present most of the features of
" organized structures observed in turbulent free shear flows. A sketch of a turbulent mixing
layer is shown in Figure 1.

II.b Model 1

Free shear layers that possess inflectional-point instability, are inherently unstable.
As the flow develops, turbulence and/or background random noise provide perturbations
necessary to excite these unstable waves and promote initial vortex formation. Therefore,
the large-scale structures are made up of all modes residing in the flow. A complete simu-
Jation of the large-scale turbulence spectrum would require the inclusion of a broad range
of frequency and spanwise wavenumber components. This was accomplished in the local
solution of Tam and Chen (1979) and the integral model of Morris and Giridharan (1990).
Figure 2 shows the unnormalized Reynolds shear stress distributions from Liou (1986) for
waves of various frequencies. The velocity profile of the basic flow is a hyperbolic tangent
function and the most unstable frequency for this flow is 0.2. The stress distributions are
normalized by their peak amplitudes. It can be seen that for a wide range of frequencies
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around the least stable mode, the distributions of fiow quantities due to the large-scale
fluctuation are similar. However, the mode that interacts most strongly with the mean
fiow is the one that has the largest spatial growth rate: the most unstable wave. Thus, for
efficiency, instead of including all the unstable waves, it is assumed here that the locally
Jeast stable modes are most effective in extracting energy from the mean fiow. The most
unstable waves are then used to describe the overall behavior of the coherent, large-scale
motions. In other words, the large-scale motions are described by the locally most ampli-
fying disturbances in the flow. The method used here to locate the most unstable modes
can be found in Liou (1986).

The Rayleigh equation, equation (9), governs the local distribution of the large-scale
velocity fluctuation in the y direction. The equation is solved locally at each streamwise
location. The amplitude function A(z) is determined from the energy equation for the
Jarge-scale structures, equation (10).

The equation for the amplitude function is obtained by substituting the wave form
expressions, equation (8), for the fluctuation components into the wave kinetic energy
equation and integrating across the flow. The resulting equation is

dG,A?

= Gy A’ + G3 A® (11)
dx

where

+oo
/ [U(aa* +99°) + 2.0 m(a,a')] dy

1 [t 10U ...
Go 5 /_oo [ay R(ad )] dy
where an asterisk denotes the complex conjugate. The terms containing the residual
stresses in Gz are responsible for draining energy from the waves. Gs is of crucial im-
portance in determining the wave amplitude and has to be considered carefully. However,
very little experimental or theoretical results are available regarding these stresses. In the
following analysis, we assume that the energy transferred out of the large-scale fluctuations

is proportional to

[

- (12)

where v and [ are the characteristic velocity and length scales of the large-scale motions.
This model assumes that the turbulence is in an equilibrium state for the small-scale
fuctuations. That is, the rate at which energy 1s transferred from the large scales is equal
to the rate at which the energy is dissipated by viscosity at the small scales. The net efiect
of these terms may thus be modeled by

(13)

where C, is 2 model constant. The energy drain integral, G3, becomes:

C - 00
G, = —=

° T 81 e

[(aa' + 61‘)')3/2] dy (14)
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The amplitude of the wave structures can be calculated using an explicit fourth order
Runge-Kutta method or the implicit Euler method.

To solve the mean flow equations, the small-scale Reynolds shear stress —u't’ has to
be modeled. Since it is mainly the motion at the large scale that is considered here, a
simple zero-equation model is employed. That is,

— . ou, oU
_Tv = Gyl l_aZK'a—y' (15)

The model introduces an additional parameter, C,.

Thus, Model I contains two model constants: C, used in the modeling of the energy
transfer term in the amplitude equation for the wave structures and C, used in the simple
eddy viscosity model for the small-scale Reynolds stress, —u'v',

I1.c Model 11

The large-scale structures in turbulent mixing layers are dvnamically active and dom-
inant. Thus the development of the flow is mostly affected by turbulent motions of large
scale. Consequently, in this approach, only fluctuations at the large scale are included.
Thus, there is no direct interaction between the small-scale structures and the develop-
ment of the mean flow. This is also suggested by the analyses of Tam and Chen (1979)
and Morris and Giridharan (1989). The characteristics of the locally most unstable mode
is still considered to be representative of that of the large-scale structures. The energy
gained by the large-scale structures from the mean flow is prevented from becoming un-
bounded through the energy transfer terms in their energy equation. Thus, the influence
of the small-scale turbulence on the mean flow is indirectly through the energy balance of
the large-scale motion. In this model, the equations for the mean flow and the large-scale
structures are the same as those in Model 1. The model contains only one mode] constant
, C1, that describes the transfer of energy from the large to the small scales. Nevertheless,
both Model I and II predict the average behavior of the shear layers.

II.d Model III

Model III simulates the time-dependent motion, at the large scale, associated with the
passage of a train of large-scale structures. Experimental observations suggest that, even
if initially there exists a continuous spectrum of infinitesimal disturbances upstream of the
splitter plate, a disturbance emerges dominating over other neighboring perturbations in
the early stages of the flow development. As the flow evolves; however, there is 2 contin-
wous shift of the dominant component toward lower and lower frequencies. In fact, the
growth of an initially small periodic disturbance is often followed by the development of
subharmonics. In numerical simulations, however, the initial conditions can be conceived
in a much simplier way. Instead of monitoring the disturbances in the initial continu-
ous spectrum, a hierarchy of disturbances made up of the initially most unstable mode,
according to linear theory, and its subharmonics may be chosen. This reflects the “subhar-
monic evolution model” proposed by Ho and Huang (1981). Thus, the unsteady turbulent
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large-scale fluctuations are described by the superposition of the instability waves in this
hierarchy. This enables the time-dependent flow field at the large scale to be simulated.
The solution methods for these equations are the same as in Model] I and II. The equation
for the amplitude function, however, has to be modified. Firstly, it is assumed that inter-
actions between harmonics are negligible as there should be sufficient phase jitter in the
unexcited shear layer. In addition, the details of the process of energy transfer from the
large to the small scales is not modeled explicitly. At each axial location where a given
instability wave saturates, or begins to decay, the energy is immediately removed from
the system. Consequently, there is no need to specify either a constant associated with
the energy transfer process or the effects of the interaction between the small-scale motion
and the mean flow. It should be noted that the energy equation is only solved for each
instability wave during its period of growth. For amplifying waves the comparison between
linear theory and experiments by Gaster et al. (1985) showed that an inviscid analysis
is adequate. Thus, the interaction between the large and small scales will be neglected
during the growing or unstable region for each instability wave.

The solution for the turbulent luctuations is then fed back into the iteration process to
get the corrected mean flow solutions. A visualization of the unsteady flow field predicted
by Model III is made by means of streaklines. The streaklines are produced by injecting
passive marker particles at the initial location, z = zo at various points across the shear
layer. The positions of these particles at subsequent times can be calculated using the
equations: '

Eid_tz(t) = Ulzt), y(t)] + v|z(t), y(t), t] (16)
and

Syl) = V[, v) )+ vl ve) st (17)
with

z(0) = zo, v(0) =y, k=1,..m

Particles thus move at each time step according to the local instantaneous velocity field.

This concludes the description of the wave models. The dominant large-scale coher-
ent turbulent structures in turbulent free shear flows are modeled in a weakly nonlinear
manner. Three models are derived to simulate the development of turbulent free mixing
layers. These models connect the development of the mean flow field with the dynamics
of the large-scale turbulent fluctuations. The equations governing the mean flow field and
the unsteady large-scale turbulent motions form a closed system of equations.

II1. Numerical Procedure

The boundary-layer approximation renders the system of equations governing the mean
fiow parabolic. A fourth order Keller-Box scheme is applied 1o solve the resulting equa-
tions. The equation for the instability wave, which is the Ravleigh equation in the present
formulation, has been solved using various methods, including a traditional shooting, two
spectral and a finite difference methods. For spatial instability, the system of equations

9



generated by the global approximations of the Rayleigh equation forms an eigenvalue
problem which is nonlinear in its parameter, the wave number. It may be solved using the
Linear Companion Matrix method or 2 method based on matrix factorization, Bridges and
Morris (1984). Details of the various solution schemes can be found in Liou (1986,1990)
The Rayleigh equation and the equations for the mean flow are solved iteratively at each
streamwise location. The convergence criterion for the iterations is

1 (k+1) (k)
g o - ] < e, (18)
J

where ¢, is a small number and M is the total number of grid points at each streamwise
location. The amplitudes of the waves are calculated explicitly using a fourth order Runge-
Kutta method applied to the wave energy equation (11)

IV. RESULTS AND DISCUSSIONS

The models have been tested in an incompressible free mixing layer. A hyperbolic
tangent distribution is taken as the shape of the initial streamwise mean velocity, U(zo,¥),

le.,

U(zo,y)=%(1+tanh(30y)). (19)

The initial cross—stream mean velocity, V (zo,y), can be set to a small number or zero.
The boundary conditions for the mean flow are

U(z, w(z)) =10, U(z,w(z)) =00, V(z,y(z)) = 00 (20)

where y, (z) and y;(z) are the upper and the lower boundaries of the physical domain shown
in Figure 3. As a test of the ability of the instability wave model to describe large—scale
structures and the associated Reynolds stresses, the model was first applied in the self-
similar region of the flow with a mean velocity profile from Patel (1973). Figure 4 shows the
calculated and experimental Reynolds shear stress distributions. Calculated results using
a traditional shooting method compare favorably with that using global approximations
of various order. Note that all the calculated results have been normalized by the peak
experimental value. The discrepancy at the low-speed side of the layer suggested that the
momentum exchanges due to the small-scale turbulent motions might not be negligible
in this region. It should be noted that this negative value of Reynolds shear stress disap-
pears for small values of velocity in the lower stream. The structures obviously contribute
negative shear stress at the low-speed edge of the flow. This counter—gradient transport
of momentum gives negative energy production in this region. A similar phenomenon was
observed experimentally by Komori and Ueda (1983) in the self-similar region of a jet.
In fact, regions of negative shear stress can be easily observed if the large-scale struc-
tures are excited artificially, for example, see Wygnanski, Oster and Fiedler (1979) This
counter—gradient momentum transfer decelerates and subsequently reverses the flow on
the low-speed side of the mixing layer as the shear Jayer develops.

10



IV.a Model I

As noted above, Model I proposes that a contribution from the small-scale Reynolds
stresses is required to describe the total turbulent forces that determine the development
of the mean flow. The model introduces a new parameter, C,. Latigo (1979) argued that
the turbulent shear stress contributed by the small-scale, incoherent motions 1s about a
half of the total shear stress. An estimate of C, based on the value that is used in the
classical eddy-viscosity models is then obtained. In addition, the force terms associated
with the large-scale normal stresses in the mean momentum equations are also retair-ed,
since they are found to be of the same order as the other Reynolds stress gradient terms on
the low-speed edge of the shear layer. The norma) stresses associated with the large-scale
structures can be calculated directly by the wave models and involve no further empiricism.

In the numerical calculations, the local solution of the Rayleigh equation is found to be
time—consuming. To accelerate the axial marching an adaptive grid has been devised. The
grid size in the cross-stream direction in the transformed domain are fixed. The axial step
sizes are chosen such that the convergence indices of the first iteration at a downstream
station are greater than a fixed number e.

ﬁZ‘ULIJ = Ui} 2 e (21)
j

The grids are found to cluster in a region where there are large changes of flow properties,
for example, when the flow is developing initially.

The initia] wave amplitude represents the initial strength of the instability waves or large-
scale motions for which there are no quantitative experimental measurements. An estimate
of the initial wave amplitude can be made based on the initial energy flux of the turbulence.
From a sequence of numerical experiments, however, it is found that flows with relatively
strong initial amplitude saturate early. Subsequently the flow developsin a similar manner;
only the virtual origin of mixing is changed. The initial amplitudes for the cases presented
in this paper are fixed at 5 X 10-2. The corresponding initial turbulence intensity is about
1%. The model constant C; of the energy transfer term in the wave kinetic energy equation
s taken from a conventional Prandtl energy model, Launder, et. al. (1979). It is found
that its value has no significant infiuence on the results of the mixing layer calculations.The
values of C, and C; used here are

C, = 2.8 C, = 0.08 (22)

Again, in Model] I, turbulent forces associated with the wave shear and normal stresses
as well as the small-scale motions are considered. Figure 3 shows the axja) forces acting
on fiuid elements across the layer at various axial stations. Negative or retarding forces
associated with the wave Revnolds shear stress appear near the zero speed side early in the
developing stages of the layer and never change sign as the flow develops. Nevertheless,
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the other two mechanisms, which are the gradients of the normal stresses of the turbulent
large-scale structures and of the shear stress of the small-scale turbulent fluctuations,
contribute positive driving forces. The net effect is the co-gradient momentum transport
near the zero velocity side of the layer. It can also be seen that the —(u? — v?), terms
plays a significant role in the dynamics of the mixing layer development, especially near
the zero velocity side of the layer.

The growth of the layer measured by § is shown in Figure 6 6 is the distance between
the points where the Jocal mean velocity is 0.9 and 0.1 of the main stream mean velocity,
T7. The calculated rate of growth, dé/dz, agrees reasonably well with the value that is an
average taken over various experiments in the self-similar region of the flow.

Figure 7 shows the predicted axial mean velocities at a sequence of downstream sta-
tions as functions of the self-similar coordinate, . The agreement between the predictions
and experimental data is good except near the low speed side of the shear layer. The
Javer has not reached self-similar state at z = 0.72 and local velocity profile differs from
Patel’s self-similar velocity profile. Note that for a free mixing layer, the accuracy of the
measured mean flow data in the low speed region is poor due to the rapid variations in
the instantaneous flow direction. Any agreement between results on the zero speed edge
is likely to be fortuitous.

As can be seen from Figure 8, which shows the shear stress distributions across the
mixing layer at various stations, the sum of the shear stresses from the large-scale and the
small-scale motions agrees well with experimental data. The experimental measurements
are the long time-averaged correlations of the turbulent fluctuations. Model I thus not
only predicts the mean velocity profiles but also appears to model correctly the turbulent
momentum transport in the layer. The latter is usually achieved only by using higher
order moment closure models, which includes a large number of model constants.

The amplitude of the large-scale fluctuations is plotted in Figure 9. The large-scale
structures extract energy from the mean flow and grow as the flow develops. However,
energy is also being transferred to the smnaller scales and subsequently dissipated by viscos-
ity. The final equilibrium of the large-scale motions amplitude is reached when the energy
gained from the mean fiow balances the energy lost to the small scales.

IV.b Model II

Model I assumes that the large-scale and the small-scale turbulent fluctuations play
a direct role in the momentum transport process in the mixing region. Therefore, in
Model II only the fluctuations at the large scale are included. This eliminates the need to
specify a model, equation (15), to describe the momentum exchanges due to the small-scaie
fluctuations. Model II thus involves only one model constant for the energy dissipation
model in the kinetic energy equation for the large-scale turbulent fluctuations. It can
be seen from Figure 10 that the forces associated with the large-scale normal stresses
are apparently able to counter-balance the decelerating effects of the wave shear stress
gradients. Thus, a prediction of the development of the layer is possible considering only
the dynamics associated with the large-scale turbulent fluctuations in the layer.

12



The predicted mean velocity profiles are presented in Figure 11. It shows that the
mean fiow can be satisfactorily predicted by modeling only the dominant large-scale struc-
tures. Figure 12 compares the calculated axial mean velocity profiles using Models 1 and
IL. Note that the predicted development of the mixing laver has reached equilibrium state
at both z = 6.19 using Model I and z = 7.26 using Model II. Thus, Figure 12 1s comparing
the mean velocity profiles at the equilibrium state of a mixing laver using two different
turbulence closure schemes. The agreement between these predictions is more than satis-
factory. Both of the predicted mean velocity profiles deviate from Patel’s data near the
low speed side of the Jayer. However, as noted previously, the accuracy of the measured
data may be suspected in that region due to the rapid variations in the instantaneous flow
direction. This phenomenon, in fact, is predicted in the application of Model III to the
turbulent mixing layer.

As is shown in Figure 13, the predicted shear stress distributions do not match the
total shear stress distributions measured by Patel (1973). However, as noted above, this
difference does not necessarily mean that the small-scale stresses should be included. It
must be remembered that the present model simulates the entire large-scale spectrum with
a single frequency wave that is locally most unstable. Tam and Chen (1979), in their local
model, included a broad range of instability waves and found good agreement with exper-
iments without the inclusion of contributions from the small scales. In fact, it 1s shown
here that the time average characteristics of 2 turbulent mixing layer can be predicted sat-
isfactorily using only the most unstable waves, provided that all the momenturn transport
mechanisms associated with the wave are included.

The evolution of the large-scale amplitude using Model II follows a similar behavior
to that using Model I and is shown in Figure 14. Once again an equilibrium condition is
reached where the rate of energy transfer from the mean flow to the large-scale structures
balances the rate at which energy is lost by the structures to small scales for eventual
dissipation. The little kink near z = 6.0 is due to the fact that at this region there are
relatively large changes of marching step sizes required by the adaptive grid generation
scheme. Since the marching step sizes are selected based on the global variation of the
mean flow, this kink has little effect on the predictions of the flow development.

Figure 15 gives the growth of the mixing layer in terms of momentum thickness, @,
predicted by Model II. In the present analysis, the momentum thickness is defined as

2y
6 = /2 g(1 - g)dy (23)

yi

6o is the initial momentum thickness and the straight line represents the rate of growth of
the layer, which is an average over experimental data at the equilibrium state of mixing
Javers. In the early stages of the development of the mixing Jayer, the large-scale structures
in the fiow are relatively weak and momentum exchanges are mainly due to the effect of
molecular viscosity. The strengthening of the Jarge-scale structures increases drastically
the mass and momentum exchanges across the layer and, consequently, the width of the
mixing region. This reflects the same phenomenon predicted using Model 1.
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Figure 16 shows the Strouhal number, Stg, of the large-scale structures based on the
local momentum thickness. That is,

St = -[_:.q = -&)——.0_ (24)
U 27U

where f and w denote the frequency and the angular frequency. After the mixing layer
reaches an equilibrium state, the Strouhal numbers of the large-scale distur- bances ap-
proach a constant (=~ 0.012). The Strouhal number of the large-scale structures, based on
the average passage frequency and the local momentum thickness, in an unforced, initially
fully turbulent mixing layer is =0.024, Hussain and Zaman (1985). In a spatially devel-
oping mixing layer, unstable waves or large-scale structures are continuously amplified as
they propagate downstream. The amplification of the unstable waves continues until they
become neutral. Thus, a wave at its neutrally stable stage reaches maximum amplitude
and dominates over waves of other frequencies. Consequently, the detected average pas-
sage frequency of the large-scale structures is associated with that of the locally neutral
mode, which is about two times of that of the locally most unstable mode. The present
calculation, which predicts that the Strouhal numbers of the locally most unstable mode
reflects this phenomenon.

IV.c Model III

Mode) III simulates the time-dependent turbulent motion associated with the passage
of a train of large-scale turbulent structures. The large-scale turbulent structures are
represented by a superposition of hydrodynamic instability waves. As the fiow develops
axially, these hydrodynamic waves become damped because of the growth of the shear
layer. Since it is assumed that energy associated with a given wave is removed immediately
after it becomes neutral, there is no need to obtain damped inviscid solutions by analytic
continuation in the complex plane, Tam and Morris (1980).

The initial wave amplitudes of this calculation are

Ao; = 1077, j=1,...6 (25)

The initial mean velocity profiles and the boundary conditions are the same as those used in
the previous calculations. In the preliminary calculations, it was found that an abnormality
in the mean velocity distributions appeared near the critical points of saturating waves.
Also, most of the shear layer growth occurred on the low speed side of the layer. This
gives a non-monotonic velocity distribution near the critical layers of saturating waves and
another infiection point appears. Saturating waves thus have to be removed before they
become neutral during the axial marching. Wygnanski and Petersen (1987) suggested that
this abnormality is due to nonlinearity. Composite expansion techniques have been applied
to investigate the effect of critical-layer nonlinearity, for example, see Goldstein and Leib
(1988) and Goldstein and Huligren (1988). Another approach to resolve this issue is to
include viscous effects; that is to solve the Orr-Sommerfeld equation. Since the present
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investigation is directed toward developing simple turbulence models, instead of including
other computationally expensive approaches, the effects of the critical point is accounted
for by incorporating a small amount of eddy viscosity in the analysis of the mean flow.
The additional mixing at the fine scale is diffusive and able to smooth out humps in the
fiow. In the present calculation, the extra mixedness provided accounts for about 10% of
the amount of turbulent momentum exchange that is suggested by conventional models.

With this modification the mean velocity distributions predicted at several down-
stream stations are shown in Figure 17. There are six waves in the hierarchy in this
calculation. Since waves are removed successively during the axia) marching, the number
of waves included depends on the distance the calculation is to be carried downstream.
There are some small differences between the calculated results and Patel’s measurements.

It should be noted that Model III simulates the development of the mixing layer asso-
ciated with the realization of a single event, which is the passage of 2 train of well-defined
large-scale structures. In physical experiments, such as that reported in Patel (1973), ex-
ternal disturbances or noise from various sources may modify the initial conditions of the
fiow. which cause events that affect the subsequent development of the layer. Therefore,
the differences between predictions using Model III and experimental data will vanish if
these randomizing events are taken into account. On the other hand, it might be ex-
pected that Model III should resemble the behavior of that of an externally excited mixing
layer, in which the layer is excited at particular frequency and cleaner fiow pictures can
be observed.

Figure 18 shows the development of the wave amplitudes. The additional small-scale
mixing increases the initial growth of the layer so that the fundamental mode is removed
at a lower amplitude than its subharmonics before its amplitude reaches equilibrium level.

The axial width of the Jayer is shown in Figure 19 and is compared with the prediction
using Model 1. As was noted earlier, the presence of this stepwise evolution is characteristic
of excited flows and would be smoothed out if many waves with slightly different amplitudes
and frequencies were included. However, the global evolution of the width of the layer
agrees closely with that using Model 1. Figure 20 compares the predicted evolution of
the momentum thickness of the shear layer, using Model II and Mode] III. Note that
the initial momentum thickness for the cases using Model I, II and III are the same.
The only differences are the values of the initia] amplitudes. The case using Model III
assumes stronger initial large-scale structures than that used in Model II. As the flow
develops downstream, Model III predicts a greater amount of large-scale mixing of mass
and momentum than Model II. Consequently, the predicted growth of the mixing region
using Model III is faster than that using Model I1. However, the predicted rates of growth,
df/dz, using these two models are virtually the same. Since both of these models provide
predictions by modeling the intrinsic characteristic structures in the free mixing layer, it
is not surprising to find some family resemblance between the results predicted by these
three models.

Figure 21 shows the unsteady velocity profiles in the axial direction at z/60=30 before,
during and after the passage of a large-scale structure. At this location, the dominatng
mode has the period of approximately 4. Reverse fiow occurs at the low speed side of

15



the laver during the passing of a large-scale structure. At the same time, the streamwise
velocity increases instantaneously at the high speed side of the layer. These instantaneous
velocity variations show the passage of a clock-wise rotating structure. Note that the
instantaneous reverse flow at the low speed side of the layer gives rise to instantaneous
changes of flow angles and makes velocity measurements extremely difficult in that region.
The visualization of the flow can also be assisted by streakline plots such as those shown in
Figure 22. The roll-up of vortices into larger vortex-like structures can be observed clearly.
The initial roll-up is dominated by the fundamental mode. As time progresses, the initial
structures convect downstream and roll around each other. These regions of concentrated
vorticity then form a single large structure. As the passive particles travel downstream,
their motion becomes dominated by lower subharmonics. Vortex-like structures of increas-
ing scale are formed. Subsequently, the rolling process between two adjacent structures
repeats as the flow develops further downstream. Careful examination of the figures also
shows how the structures are convecting downstream as they form and roll. Large tongues
of unmixed fluid are swept across the layer and reach the opposite side of the layer as ob-
served by Brown and Roshko (1974). The engulfed fluid elements from the two sides of the
laver mix and are drawn into the leading and trailing vortices when passing through the
high-strain braid region between the vortices. This provides the environment for further
fine-scale mixing.

Figure 23 and Figure 24 show the flow pictures frozen at t = 6.5 and 5.0, respectively.
In these cases, harmonic waves in the wave hierarchy are in phase. The distribution of
momentum thickness in the streamwise direction at t = 6.5 is shown in Figure 23.b. At
t = 6.5, three full-grown large-scale structures centered at roughly, z/é0 = 10,18 and 40
can be observed. These large-scale structures are essentially vortices rotating in 2 clock-
wise manner. The mean and transient velocity profiles at z/6,=18 and 40 are shown
in Figure 23.c. The turbulent large-scale structures, which appear as clock-wise rotating
vortices, contribute velocity excess/deficit on the high/low speed side of the layer, relative
to their respective mean velocity distributions. Therefore, the instantaneous momentum
thickness of the flow in the region occupied by the fully-grown large-scale structures is
smaller than the mean value. This can be clearly seen in Figure 22.b. Note that for 2
vortex sheet with a velocity profile given by

1 y >0
= ’ 26

k]

the momentum thickness is zero. The mean (or instantaneous) momentum thickness at
any axial station is obtained by substituting % (or < & > ) into the g in equation (26). In
Figure 23.b, three dips can be observed clearly in the instantaneous momentum thickness
distribution. The positions of the dips correspond to the centers of the three fully-grown
structures. On the other hand, the instantaneous velocity profile at z/6g = 27 shows
velocity deficit/excess on the high/low speed side of the layer. At t = 6.5, the high-
strain braid region between two structures passes through z/6o = 27. Therefore it is not
surprising to observe that the instantaneous momentum thickness is greater than the mean
momentum thickness at z/8, = 27. If there is a very strong velocity excess/deficit on the
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high/low speed side, a shear flow may have negative momentum thickness. The case shown
in Figure 24 reflects the situation. Att =5, two vortices are merging at z/6 = 30. The
two merging vortices deform as they roll around each other. The instantaneous velocity
profile at the center of the merging is shown in Figure 24.c. It shows clearly the footprints
of these two deformed structures. This results in high velocity excess/deficit on the high/
Jow speed side of the layer. The local instantaneous momentum thickness becomes negative
and reaches a minimum at z/6,=30 before picking back up downstream. The following
increase in momentum thickness in the axial direction is the effect of further mixing of the
low and high speed fiuid. Similar to the case at t = 6.5 and z/60=27, the instantaneous
momentum thickness at z/6,=30 and 50 are much higher than the respective mean values.
As mentioned earlier in the analysis, harmonic waves have to be cut off before they saturate
to avoid the problem associated with nonlinearity. Therefore, the rather abrupt variations
in the instantaneous momentum thickness distributions in Figure 23.b and Figure 24.b
can be observed at the axial locations where the waves are cul off. The second and the
third harmonics are cut off at /6o = 18 and 30, respectively. The dotted lines in Figure
23.b and 24.b show the projected distributions of the instantaneous momentum thickness
should the harmonic waves be carried through their neutral points in the calculations.

V. SUMMARY

Three models based on a quasi-linear theory, that describes the dynamics of the domi-
nant large-scale structures in a free mixing layer have been presented. The closure schemes
incorporating the models are able predict the development of the turbulent free mixing
layer accurately, even though they contain some assumptions and simplifications. The
predicted averaged properties of the incompressible turbulent mixing layer agree well with
experiments. The transient turbulent motions at the large scale in the layer mapped out
using Model III possess many features that are apparent in flow visualization experiments,
such as the convective nature of the large-scale structures, the large—scale transport of un-
mixed fluid elements and the roll-up of vortices. The models involve less empiricism than
most conventional models. Since large-scale coherent structures appear also in shear flows
of other geometries, the closure schemes presented here should be applicable to those cases
as well. It is hoped that these models, which originate from observed physical phenomenaz,
will provide efficient tools to model other free shear flows.
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(a) Streakline plot;

Figure 4.28. Flow visualization using Model IIT at t = 6.5.
(b) Evolution of momentum thickness, - - - -, Inean; ——, Model
I1I; (c) Velocity profiles at (1) z/60 = 18, (2) 27, (3) 40, ——- -,

, transient.
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Chapter 4

Conformal Grid Generation Using Wegmann’s Methods

Roy S. Baty and P. J. Morris
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ABSTRACT

Conformal coordinate transformations are used to map simple computational
domains onto arbitrary simply and doubly connected regions with smooth bound-
aries. Efficient schemes involving the solution of the inverse boundary correspon-
dence function problems associated with mapping the unit disc or circular annulus
onto simply or doubly connected domains respectively are employed. The numer-
ical implementation of these schemes is emphasized. Examples are generated for
regions with elliptic inner and outer boundaries. Additional examples are used to
demonstrate the accuracy and convergence of the schemes and their practical lim-
itations. The techniques are found to converge well if holomorphic functions are

used to describe the boundaries. The use of preconditioning maps is also discussed.
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1.0 INTRODUCTION

Many problems of practical interest in engineering involve the solution of dif-
ferential problems in complex geometries. In such problems the boundaries may
not conform to coordinate lines in an orthogonal coordinate system. Alternatively,
the coefficients in the differential problem may not be constant along coordinate
lines making a separable form of solution impossible. Several numerical techniques
are available to overcome these difficulties. Finite element or boundary element
methods may be used. If a finite difference or spectral approximation is sought the
physical domain must be transformed into a simple computational domain. Once
again, several alternative approaches exist. The use of conformal maps is very
desirable. Such maps simplify the governing differential equations in the mapped
regions since the metric tensors are diagonal. However, these maps are difficult,
and sometimes inefficient, to generate computationally and often lead to ill—poseci

numerical problems.

Recently, Wegmann [1,2] developed a very efficient scheme to determine the
conformal map from a standard computational domain onto an arbitrary simply
connected region in the plane. This scheme solves the inverse boundary correspon-
dence problem associated with mapping the unit disc onto a region with a smooth
boundary. Wegmann |[3] also extended this technique to determine the boundary
values for the transformation mapping the circular annulus onto a doubly connected
region with smooth boundaries. In both cases, the entire conformal map may be
generated from the solution of the boundary correspondance problem using the

Cauchy Integral Theorem.

The present study of conformal maps is motivated by the authors’ interest in

the spatial stability of jets of arbitrary cross section. The characteristics of the
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instability waves play an important role in the jet mixing process and the radiation
of noise by high speed jets. The growth of these instabilities is governed by the
linearized, inviscid equations of motion. These may be simplified to a single linear,
elliptic, second- order partial differential equation for the instability wave pressure.
In general, the coefficients in this equation vary arbitrarily in the cross section
plane and no separable solutions may be found. Thus a numerical solution must be

obtained in the regions of non- constant coefficients.

There are two characteristic regions in a jet flow. The first is the annular mixing
region surrounding the potential core of the jet and the second is the developed jet
flow region downstream of the potential core. Once a map is generated for either of
these doubly or simply connected regions onto a simple computational domain, the
homogeneous boundary value problem for the instability wave pressure fluctuations
may be solved. Such a solution, using a hybrid pseudospectral and finite difference

algorithm is described by Baty and Morris [4].

In this paper we apply Wegmann'’s techniques to compute the conformal co-
ordinate transformations for simply and doubly connected regions. Examples are
given for regions appropriate for the study of jets issuing from elliptic nozzles. Sim-
ply and doubly connected elliptic regions of aspect ratios 2 and 3 are considered.
The conformal maps for such regions are difficult to compute and provide a good
numerical test case. The numerical implementation of the mapping techniques is
emphasized. The elliptic and additional maps are generated to establish the con-
vergence and accuracy of the techniques. In addition, the practical limitations of

these techniques and some methods to overcome these difficulties are presented.

In the next section some preliminary mathematics is developed. Sections 3

and 4 describe the simply and doubly connected Wegmann methods. Details of the
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numerical implementation of the techniques and several examples are given. Some
practical limitations of the techniques and a discussion of convergence and efficiency

is given in Section 5.
2.0 PRELIMINARY MATHEMATICS

The regions of interest in the present study are the annular and disc-like regions.
Therefore, the canonical regions are the unit annulus (with some inner radius 0 <
u < 1) and the unit disc. Let C denote either canonical region, let P denote a

given physical region, and let W denote the conformal mapping satisfying:
W:C—o P 2.1
Consider a rectangular region, R, defined by
Ri=[(y",v") ER*|a<y <b0<y < ¢ .22

where a, b, and c are finite real numbers and where ¢ > 0. The exponential mapping,

exp(iz), then carries R onto an annular region, C:
exp: R—>C 2.3

Composing the mappings given by 2.1 and 2.3 yields a map from a rectangular

domain onto the region of interest:
Woexp: R—= P 24

The exponential map carries an infinite strip onto the unit disc. Thus, any finite

rectangle will be carried onto an annulus.

The following discussion considers the analysis required for simply connected
geometries. The analysis needed for the doubly connected geometries may be gen-

eralized from this case.



Let D be the unit disc. Let & be a simply connected region with a smooth

closed boundary parameterized by,
z(t) on 0Lt<B. - 2.5

Here, z is assumed to be a smooth regular curve. By the Riemann mapping theorem

there exists a unique function g such that,
g: D — €& 2.6

It should be noted that the uniqueness of g follows from the imposition of normal-
izing conditions, for example see [5]). For simply connected regions the following

conditions are imposed:
g(0) = O, g'(0) > 0. 2.7

The goal of the simply connected Wegmann method is to determine the map g on
the boundary of the unit disc. This requires determining the image of a point on
the unit circle. Since g(D) = &, it follows that a point on the unit circle is carried
to a point on the boundary of £. Now, since the boundaries of D and & are known
smooth functions, only the angle of a point on the boundary of D or £ needs to be
known in order to determine its location on the boundary. Therefore, if the angle
8 of a point is given, the problem becomes to determine the angle 7(6) of its image
satisfying:

o(e®) = z(r(8)) 2.8

Any real function 7(6) such that,

7(8) — —4, 2.9



is 27 periodic and 2.8 is satisfied is called an inverse boundary correspondence

function, IBCF.

The Wegmann method solves for the function, 7, so that equations 2.8-9 are
satisfied. The technique assumes that a good guess, 7, for 7 is known and then

computes a small correction factor, n, such that:
r o= f4n 2.10

To simplify the construction of 7, an approximation of n is calculated. Substitution

of 2.10 into 2.8 and linearization of the result yields:
g(e®) = =2(#(8) + 2 (7(0))n(f) z1

where the prime denotes differentiation with respect to 7. Equation 2.11 can then
be recast as a function—theoretic boundary value problem allowing the explicit de-
termination of n. In the numerical solution of the IBCF, equation 2.11 is solved

iteratively becoming:

g1 (€°) = z(7c(8)) + 2 (e (6))m () 2.12

Therefore, at each step of the iteration the function 7 as well as the boundary of
the smooth domain ¢ are approximated. Once the IBCF, 7, has been computed,
2.8 may be used to construct the function, g, on the interior of the unit disc from

the Cauchy Integral Theorem.
3.0 THE SIMPLY CONNECTED WEGMANN METHOD

Wegmann’s technique solves the inverse boundary correspondence problem,
introduced in the last section, by iterative computation of the correction factor, 7,

defined by 2.10. This method generates simultaneously two sequences of functions.
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The first sequence of functions, gi, is analytic on the interior of the unit disc and
satisfies the normalization conditions 2.7. The second sequence of functions, z,
maps continuously the unit circle onto the boundary of the physical region. If these

sequences converge, they may be used to compute the boundary correspondence

function, 7.

The basic strategy of the Wegmann method is to construct the real part of the
desired conformal map, g,, on the boundary of the physical regions and then use a
conjugate integral operator, K, to determine the imaginary part. Here K is defined

by the equation,

1 2 T—1
Ku(r) = 2—7rP.V./ u(t) cot( 5 )dt 3.1
0

where P.V. stands for the principal value of the integral.

Equation 3.1 defines a general operator which generates the conjugate periodic
function, v, of a real 27 periodic function, u. Furthermore, the operator K is easy
to evaluate numerically. If the functions on which this operator acts are expressed
as a Fourier series, K simply multiplies the coefficients of the Fourier series by +1

or by 0. The mathematical and numerical details are given in Henrici [6)].

Wegmann’s method |3], constructs the real part of the conformal map by re-
casting 2.12 as a2 Riemann-Hilbert problem given by:
o(B2l]) o2 ) 22
2 (¢ (6)) 2 (7 ()
This Riemann-Hilbert problem has a unique solution, Henrici |5]. Furthermore,
the solution of the Riemann-Hilbert problem may be used iteratively to compute

the desired conformal map on the boundary of the physical region. The k + 1-th

approximation of the map is given by :

we(8) = K(B(7(6)) — ) 3.3



o (8) = S[z(r.(8)) exp(ws (8) — i6(r(6)))] 3.4
gear(€?) = (9. (6) — xx — Ko (6)) exp(io(n (6)) —wi(6)) 3.5
where ¢ is the tangent angle of the curve defined by:

2(&) = [2'(€)lexp(i4(¢)) 3.6

Furthermore, the constant, xx, is defined by:

X = i cot b 3.7
where,
1 2n
g = — 3.8
g 27 . g (€)d¢,
and
1 2x .
&, = 2 ). (¢(r (€)) — €)dE. 3.9

The constant ;, insures that the normalizing conditions 2.7 are satisfied.

The update of the correction factor, 7, is then determined by 2.12 and 3.5,

which yield,

C#n®)) x4 Eal(0)
m() = §R<z'(n(e))) 7T (0 exp (4 (8)) .10

Then using 3.8, the next iteration of the inverse boundary correspondence function

becomes:

e (0) = 7 (6) + 7k (6). 3.11

Equations 3.3-11 constitute the simply connected Wegmann method.
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3.1: Numerical implementation of the Wegmann method

The Wegmann method has been implemented numerically using FFT’s to ap-
proximate the Fourier series and the necessary periodic functions and their conju-
gate integral operators. The FFT’s have been computed using the standard IMSL

subroutines DFFTRF and DFFTRB.

The present calculations have been performed on a Vax 11/780, in double
precision, using the following steps:

[1] An initial guess for the inverse boundary correspondence function, 7o, is made.

|2] The boundary functions z, z' and the argument of 2', ¢, as defined by 3.6 are
computed at the values of 7,.

[3] The integral equation 3.3 is then computed. This is accomplished using an FFT
to approximate the integrand of 3.3. Then the conjugate integral operator is
applied. Finally an inverse FFT is applied to obtain a discrete representation

of the function w,.
[4) Using the results of steps 2 and 3, ¢, is then computed from 3.4.

[5] The conjugate integral operator is then applied to g, . This is accomplished using

an FFT and its inverse is also obtained as outlined in step 3.

[6] The normalization constant, defined by 3.7, is then computed, using 3.8 and

3.9.
[7] The final step is to use the results of steps 2 through 6 to compute 7, given

by 3.10, and then update the inverse boundary correspondence function, 3.11.

If a good initial guess is provided, the Wegmann method converges quadrati-
cally. For the present application of grid generation, the scheme requires typically

5 iterations. Therefore, the coupling of the FFT's with the quadratic convergence
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rate makes this scheme very efficient.
3.2: Validation of the simply connected Wegmann method

The code has been validated by computing the inverse boundary correspon-

dence function for an inverted ellipse defined by:
z(s) = (1—(1—p°)cos®s)? exp(is) 3.12

for 0 < p < 1. In this case the boundary correspondence function may be deter-
mined exactly. From Gaier [6], the solution of the inverse boundary correspondence
function is given by:

tan(f) = ptan(r) 3.13

Table I shows the maximum value of the absolute errors for the inverse boundary
correspondence function defined by setting p = 0.6 in 3.12. Here, N and k represent
the number of points used to discretize the circle and the number of iterations
respectively. These error results have the characteristic properties of the results
found by Wegmann (1], for the inverted ellipse. Table I also illustrates the quadratic

convergence rate of the scheme.

The Wegmann scheme has also been used to compute the inverse boundary
correspondence functions for regions bounded by ellipses. The boundary curves
defining the ellipses are written in terms of holomorphic functions. These are given
in Section 5. The sensitivity of the scheme to the functional form of description of
the boundaries is also discussed in Section 5. Once the IBCF’s are determined, the

conformal maps are computed using the Cauchy Integral Theorem, see Henrici (5],

1 2mit
9(z) = / L(e—)—dt 3.14
[}

1 - e-—2n\'tz

given by:
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Equation 3.14 is approximated by a series, using an FFT to compute the coefficients
of the series. The series is then evaluated at the grid points in the computational

domain by applying the Horner summation technique: Burden and Faires |7].

Figures 1 and 2 show the grids generated using the Wegmann method for simply
connected elliptic regions of aspect ratio 2 and 3. Figure 3 shows the computational
domain for these examples. Recall that this rectangle is mapped onto the elliptical

regions by composing the exponential map with the Wegmann map.
4.0 DOUBLY CONNECTED WEGMANN METHOD

The doubly connected Wegmann method [3] is a generalization of the simply
connected scheme. In this case, the canonical region for the conformal map is
the unit annulus, with interior radius g. This scheme requires the solution of two
inverse boundary correspondence problems computed simultaneously, one for each
boundary of the physical region. Furthermore, the value of the interior radius of

the canonical annulus must be determined.

Since the Wegmann method for annular fegions is a generalization of the simply
connected method, the iterative steps are not outlined in the present study, but
may be found in reference [3]. It should be noted, however, that Wegmann tested
two versions of the scheme. These versions differ in the iterative method used to
compute the inner radius of the annulus, p. All the numerical experiments presented
in this section are based on Wegmann’s first scheme. The first method is applied
since its convergence properties have been justified rigorously, while there is less

mathematical justification for the convergence properties of the second scheme.

The doubly connected scheme has been implemented numerically using FFT’s

to approximate the periodic functions and their corresponding conjugate integral
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operators. As with the simply connected method, the calculation is initiated by
providing a guess for the IBCF’s, 7, o, and 73,0. The subscripts 1 and 2 denote
the outer and inner inverse boundary correspondence functions respectively. With
good initial guesses for the IBCF’s and the interior radius, the doubly connected

Wegmann method converges quadratically.

To validate the doubly connected Wegmann method, the inverse boundary
correspondence functions have been computed for the annular region defined by the
curves:

z,(s) = exp(is), 4.1

and,

z(s) = A+ Bexp(is) 4.2

for 0 < A, B < 1. The conformal map carrying the unit annulus onto this region is

given by

f(z) = jz+t 4.3

mz+n

where the constants 7, £, m, and n may be determined from the coordinates of the
center of the circles. Thus, the inverse boundary correspondence functions for this

example may be computed easily from 4.3.

Table 2 shows the maximum value of the absolute errors for the IBCF’s defined
for the non- -concentric region for A = 0.2 and B = 0.5. These results are again sim-
ilar to the results of Wegmann |3] for this region. As in Table 1, N and k represent
the number of points used to discretize the boundaries and the number of iterations
respectively. The error results are presented in pairs: the first number corresponds
to the error on the outer boundary, while the second number corresponds to the

error on the inner boundary.
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The Wegmann method has also been applied to compute the boundary corre-
spondence functions for annular elliptic regions. The functions used to define the
boundaries of the elliptic regions are given in Section 5. Once the IBCF’s are com-
puted, the conformal maps are computed using the Cauchy Integral Theorem. For
the annular domains, two Cauchy integrals are needed to approximate the confor-
mal map on the interior of the annulus. One integral is defined on each boundary
of the canonical annulus. These integrals are approximated using series, comput-
ing the coefficients with FFT’s. The Horner summation scheme is then applied to

evaluate the truncated series at the grid points in the computational domain.

Figure 4 shows an annular elliptic region with outer boundary of aspect ratio 2.
The corresponding region in the computational domain is rectangular with a = 0,
b=n/2, and ¢ = 0.42, in 2.2. Recall that the conformal map from the rectangular
computational domain onto the elliptic region is obtained by composing the expo-
nential map with the Wegmann map. Figure 5 shows 2 thin annular elliptic region
with outer boundary of aspect ratio 3. In this case a = 0, b=mn/2,and ¢ = 0.09 In

2.2.

5.0 PRACTICAL LIMITATIONS OF THE WEGMANN METHOD

In the preceding sections, the Wegmann methods were shown to be extremely
powerful techniques to generate the conformal coordinate transformations for simply
and doubly connected regions. Using FFT’s and the Horner summation scheme,
the overall Wegmann grid generation method requires O(N log N) computations,
where N is the number of discretization points on the boundary of the computational
domain. (The operation bound is based on the assumption that the total number of
grid points is less than the value of N.) This order of computations is an improvement

over standard integral techniques which typically require O(N?) computations. The
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standard integral approach is to compute the inverse coordinate map, and then
approximate the desired map using an interpolative process. As an example of an

integral approach for the inverse map, see Symm [8].

The Wegmann technique is also more efficient than the numerical method de-
veloped by Fornberg, [9], [10], and [11]. For simply connected domains the Weg-
mann scheme is approximately seven times more efficient than the Fornberg scheme
(Wegmann [11]). For doubly connected domains, the Wegmann method is even
more efficient than this, since it converges quadratically while the Fornberg method
converges linearly. It may be the case that the Fornberg method is easier to code
than the Wegmann method. It may also be the case that the Fornberg method is
easier to apply to an arbitrary region with a smooth boundary, since the Wegmann
method is sensitive to the initial guess for the inverse boundary correspondence

function.

Some limitations of the Wegmann method determined during the numerical
experiments will now be discussed. A basic limitation of the Wegmann method is
in the choice of functions used to describe the boundaries of physical regions. In
general, Wegmann {1, 2, 3] showed that a function with Holder continuous deriva-
tives may be used to generate the inverse boundary correspondence function needed
to construct the desired conformal mapping. However, if simple smooth polar ex-

pressions of the form:

z(8) = p(6) exp(i6), 5.1

are used to represent the boundary of the physical region, the Wegmann method
does not necessarily converge. The difficulty is that, although the first three deriva-
tives of z are Holder continuous, they may become large. This forces the initial

guess for the Wegmann technique to be very good and, in general, a very good
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initial guess is not available.

The polar form of the boundary functions has been implemented for simply and
doubly connected elliptic regions. Several initial guesses based on linear and non-
linear functions for the inverse boundary correspondence function have been tried
in conjunction with the polar representation. In all cases the Wegmann method

fails to converge.

In order for the Wegmann method to converge without a good initial guess,
holomorphic (complex, analytic) functions are used to describe the boundaries of
the physical region. In the case of the simply and doubly connected elliptic regions
the map:

asin(—8 + 1p) 5.2

has been used to represent the boundaries of the regions. Here a and p are real
numbers and the variable § is defined in the interval [0, 27]. Figure 6 shows the
first derivative with respect to 8 of the holomorphic and polar representations for an
aspect ratio 2 ellipse. Clearly, the derivative of the holomorphic function does not
fluctuate as much as the derivative of the polar representation. It should be noted
that the holomorphic representation must satisfy the Cauchy-Riemann equations

whereas the polar representation does not.
In contrast to the polar form, the holomorphic form with an initial guess of:
() = 6, 5.3
almost always converges. For the simply connected method, regions with aspect
ratio up to 4 have been run successfully.

In the case of the doubly connected method, an initial guess for the inner

radius, u, of the canonical annulus is also required. When a good guess for u is
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given the doubly connected Wegmann method works very well. However, for a case
where the outer ellipse had an aspect ratio of 2 and the inner ellipse had an aspect

ratio of 10 the scheme failed to converge.

In an attempt to improve the performance of the Wegmann m¢ vhod in such
cases an intermediate conformal mapping, J, is introduced to precondition the
physical space. Let P denote the doubly connected physical region. Let I denote
the image of P under the map J. The goal is to use the Wegmann method to
construct the conformal map from a canonical annular region, C, onto I, and then
apply the inverse map J~' to obtain the desired conformal map from the canonical
domain onto the physical region. This preconditioning has been used successfully.
For the present example, the preconditioning map is the inverse Joukowski map
defined by

Jz) = f;-:t g + : 5.4

where ~ is a function of the dimensions of the inner elliptic boundary. The inverse
Joukowski map carries the inner elliptic boundary onto a circle. The outer ellipse is
mapped onto a curve which is closer to a circle than the initial outer curve. Figure 7

shows the image of the annular region under the inverse Joukowski map.

The second limitation of the Wegmann method involves the number of dis-
cretization points needed for regions bounded by high aspect ratio curves. The
problem of determining a conformal mapping numerically generally leads to an ill-
posed computation. One cause of this is the local angle preservation of conformal
maps. In simply connected regions bounded by high aspect ratio curves, the local
orthogonality forces evenly spaced discretization points in the computational do-
main to be crowded together in the given region. The crowding phenomenon causes

the ill-posed numerical properties seen in computing the conformal maps.
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Figures 8 and 9 show the crowding of the boundary discretization points for
the simply connected elliptic regions of aspect ratio 2 and 3, respectively. Clearly,
as the aspect ratio of the boundary curve for a simply connected domain increases,

the crowding phenomenon becomes more severe.

The Wegmann method works well in determining the solution of the boundary
correspondence problem for simply connected elliptic regions. However, as the
aspect ratio increases, the number of terms needed in the series approximation of
the desired conformal map also increases. Table 3 shows the maximum error found
on the boundaries of the ellipses as a function of aspect ratio, and the number of
terms used in the series approximation. The error shown in Table 3 is defined by
evaluating the series approximation of the conformal map at points on the boundary

of the canonical domain and substituting the result into the expression:

Error = |F(z,y) -1}, 5.5
where F(z,y) is defined by,
ok y?
F = - = . 5.6
(z,9) -t

Table 3 shows that a large number of terms are required in the approximating series
as the aspect ratio of the domain increases. Therefore, these error results suggest
that the Wegmann grid generation technique is practical to apply to simply con-
nected elliptic regions of aspect ratio less than 4. For elliptic regions of aspect ratio
greater than 4, it may be possible to apply preconditioning to reduce the number of
terms required in the approximating series. However, this form of preconditioning

has not been attempted in the present study.

The severe crowding phenomenon exhibited by the conformal maps for simply

connected regions has not been observed for the doubly connected regions. The
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elliptic annular regions for which the Wegmann method has been tested show little
or no crowding effects. Figure 10 shows the image of the discretized points for
a typical annular elliptic region. The lack of crowding suggests that the annular
elliptic regions may be approximated with fewer terms than required by a simply

connected region of the same outer aspect ratio.
6.0 SUMMARY

This paper has presented numerical experiments for the implementation of the
mapping techniques of Wegmann. Through the use of FFT’s this method requires
O(N log N) operations. In addition, the technique is quadratically convergent. Sev-
eral examples for both simply and doubly connected regions have been examined.
In particular elliptic regions have been considered. The Wegmann techniques have
been shown to work for high aspect ratio elliptic regions. However, the main prac-
tical limitation of these methods for both simply and doubly connected regions has
been found experimentally to be the functional form used to represent the bound-
aries. For general regions, the Wegmann method works well if the boundaries are
represented by holomorphic functions. However, the methods may not converge
at all if a general smooth polar representation is used without a very good initial

guess.

In spite of these limitations the Wegmann method is more efficient than other
conformal mapping techniques. A further application of this scheme is in the de-
velopment of conformal maps for single and double elements airfoils. For this case
it is necessary to compute the maps on the exterior of a domain. A comparison
between the Wegmann technique and other existing methods for this problem is

being undertaken by the authors.
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Table 1: Error results for the inverse boundary corresponda

ellipse based on the simply connected Wegmann scheme.

k N =64 N=128 | N=256 | N =512
1 2.6(-2) 2.6(-2) 2.6(-2) 2.6(-2)
2 2.7(-4) 2.8(-4) 2.8(-4) 2.8(-4)
3 8.0(-8) 3.2(-8) 3.2(-8) 3.3(-8)
4 9.4(-9) 6.0(-14) 4.5(-15) 3.5(-15)
5 1.6(-9) 1.0(-14) 8.5(-15) 6.5(-15)

nce function of the inverted

k N = 64 N=128 | N =256 N =512

1 2.2(-1), 1.8(-1) 2.2(-1), 1.8(-1) 2.2(-1), 1.8(-1) 2.2(-1), 1.8(-1)
2 1.4(-2), 6.9(-3) 1.4(-2), 6.9(-3) 1.4(-2), 6.9(-3) 1.4(-2), 6.9(-3)
3 8.3(-5), 4.1(-5) 8.4(-5), 4.1(-5) 8.4(-5), 4.1(-5) 8.4(-5), 4.1(-5)
4 2.1(-9), 2.5(-7) 2.1(-9), 2.6(-7) 2.2(-9), 2.6(-7) 2.2(-9), 2.6(-7)
5 1.4(-9), 3.4(-7) 1.4(-9), 3.6(-7) 1.4(-9), 3.6(-7) 1.4{-9), 3.6(-7)

Table 2: Error results for the boundary correspondance functions of the non—concentric

annular region based on the doubly connected Wegmann scheme.

N AR =2 AR =3 AR =4
16 1.68(-1) NC NC
32 3.52(-2) NC NC
64 4.49(-3) 2.21(-1) NC
128 1.62(-4) 1.18{-1) NC
256 1.95(-7) 4.68(-2) NC
512 1.30(-12) 7.31(-3) 1.81(-1)
1024 NC 1.06(-3) 1.10{-1)
2048 NC 4.81(-5) 5.60(-2)

Table 3: Maximum error found on the boundaries of simply connected regions of aspect

ratio AR as a function of the number of terms in the series approximation. NC

denotes not computed.
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Figure Captions

Figure 1. An example grid for a simply connected region bounded by an aspect

ratio 2 ellipse.

Figure 2. An example grid for a simply connected region bounded by an aspect

ratio 3 ellipse.

Figure 3. The computational space for the Wegmann maps for the aspect ratio 2

and 3 ellipses.

Figure 4. An example grid for a doubly connected region with an outer boundary

defined by an aspect ratio 2 ellipse.

Figure 5. An example grid for a doubly connected thin region with an outer bound-

ary defined by an aspect ratio 3 ellipse.

Figure 6. Comparison of the derivatives of the boundary representations. The
holomorphic case is denoted by the dot-line curve. The polar case is denoted by

the dotted curve.

Figure 7. The image of an annular region with an elliptic outer boundary of aspect
ratio 2 and an elliptic inner boundary with aspect ratio 10, under the action of the

J map.
Figure 8. Plot of the IBCF for the aspect ratio 2 ellipse with N = 64.
Figure 9. Plot of the IBCF for the aspect ratio 3 ellipse with N = 64.

Figure 10. Plot of the IBCF for the ellipses of aspect ratio 2 and 3 with N = 64.
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Instability of Jets of Arbitrary Geometry
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INSTABILITY OF JETS OF ARBITRARY GEOMETRY

Roy S. Baty' and Philip J. Morris*
The Pennsylvania State Univeraty, Universsty Park, PA 16802

ABSTRACT

This paper describes a calculation technique for de-
termining the stability of jets of arbitrary cross section.
In particular, elliptic and rectangular jets are consid-
ered. The numerical procedure involves both a con-
formal transformation between the computational do-
main and the physical plane and a solution of the trans-
formed stability equation in the computational domain.
Modern, efficient, conformal mappings are used for both
simply and doubly connected domains. The numerical
solution is based on a finite difference/pseudospectral
discretization of the stability equation. The technique
is verified by comparison with previous calculations for
circular and elliptic jets. Calculations are performed for
the stability of elliptic and rectangular jets of aspect
ratio 2. Growth rates, phase velocities, and pressure
eigenfunctions are calculated.

1. INTRODUCTION

This study is motivated by the authors’ interest in
turbulent mixing in free shear flows. It is now generally
acknowledged that the mixing process is dominated by
the dynamics of large scale coherent structures. In ad-
dition, the local properties of these structures may be
modeled by a linearized analysis. This has been demon-
strated in the experiments and analysis of excited free
shear layers and jets by Gaster, Kit and Wygnanski!
and Petersen and Samet?. Tam and Morris®* made use
of instability wave models of the large scale structures to
predict the noise radiation from supersonic shear layers
and the development of excited jets. In addition, Liou®
and Morris and Giridharan® have developed Reynolds
stress closure schemes in which the unknown turbulent
stresses are described by solutions of the local stability
equation.

The present paper is concerned with the instabil-
ity of jets of arbitrary cross sections. This analysis is
an essential component in the extension of some of the
analyses of turbulent flows described above to more com-
plex geometries. Non—circular jets have been observed

+ NASA Graduate Student Researcher, Depart-
ment of Aerospace Engineering, Student Member, AIAA

« Professor, Department of Aerospace Engineering,
Member AIAA.

to have enhanced mixing properties over circular jets.
This makes their use attractive as injectors in combus-
tors. Schadow et al’ demonstrated this improved mixing
using an elliptical jet in 3 dump combustor. Rectan-
gular jets have applications in thrust—vectoring /thrust-
reversing engine nossles for future fighter aircraft.

The stability of elliptic jets has been studied by
Crighton® and Morris®. In the former case a vortex
sheet representation of the jet fiow was used. In the
latter case more realistic, finite thickness, shear layers
were considered where the analytic description of the
mean flow enabled separable solutions of the stability
equation to be found in elliptic cylindrical coordinates.
Koshigoe and Tubis!®!' used both a finite element and
finite difference approach to consider the stability of jete
of elliptic and triangular cross sections.

Io the present paper we describe efficient algo-
rithms to compute the stability of nom—circular jeta.
These techniques are applied to elliptic and rectangu-
lar jets. These results are 2 partial summary of a doc-
toral dissertation of one of the authors (RSB)!?. In
the mext section the numerical methods are described.
This involves a conformal mapping technique for sim-
ply and doubly connected domains and a hybrid finite-
diﬂ'erence/puudospectral solution of the stability equa-
tion. The stability characteristics of elliptic and rect-
angular jets are then given in the form of the variation
of the growth rates and phase velocities with instability
wave frequency and eigenfunctions for the most unstable

modes.
2.0 ANALYSIS AND COMPUTATIONS

A jet flow is considered issuing from a pozzle of
arbitrary cross section. The governing equation is given
in Cartesian coordinates, (z,,2)- The axis of the jet is
aligned with the z direction and the axial mean velocity
is denoted by W(z, y). The mean velocity components in
the z and y directions are neglected. Thisis the parallel
flow approximation of hydrodynamic stability. If the
parallel flow assumption is not applied and the effects of
flow divergence are considered, a problem results which
Tequires a multiple—scales analysis. These effects are not
considered in the present study.

A linear, elliptic, partial diferential equation for
the pressure is obtained by taking the divergence of the



momentum equation and using the equation of continu-
ity. The resulting equation is linearised about the mean
flow. The velocity fluctuations are eliminated in favor of
the pressure fluctuation using the linearised momentum
equations. If the pressure fiuctuation is written in the

form: '
p(:,y,z,t) = ﬁ(zn y)‘", (21)

where,
v = az —wt,

and a is the axial wavenumber and w is the instability

wave frequency, then the equation for p may be written

as: 2a

w—alW
Eqn. (2.2) is the Rayleigh equation governing the invis-
cid, incompreasible, spatial stability of jets of arbitrary
cross section. In order to determine the pressure §, in
eqn. (2.2), boundary conditions must be added. In this
case, p satisfies:

(& -a®)p+ YW - Vp=0 (2.2)

p—0 as |x|— +oo (2.3)

and

§ is finite as |x] —0 (2.4)

The computational goal in solving the stability problem
defined by equs. (2.2)~(2.4) is to determine the complex
wavenumber spectrum for a given frequency, w. Several
difficulties arise in computing the wavenumbers or eigen-
values associated with the Rayleigh problem. Firstly,
the wavenumber, a, appears nonlinearly in (2.2). This
nonlinearity prevents the direct use of standard matrix
eigenvalue calculation schemes. Secondly, if the stability
analysis is used to model turbulent mixing in jet flows,
the stability problem must be solved at a large number of
cross sections in a given jet flow. Therefore, any scheme
developed must be computationally very efficient.

2.1 The Generalised Rayleigh Equation

To consider jets of arbitrary geometry, conformal
mappings are used to map standard computational do-
mains onto realistic jet flow cross sections. Conformal
mapping is analytically a very desirable technique, since
these maps simplify the governing differential equation
by generating a diagonal metric tensor. Therefore, con-
formal mape are applied to simplify the Rayleigh prob-
lem for a jet of arbitrary geometry.

Recently, very efficient schemes have been devel-
oped to determine the conformal maps from standard
computational domains onto arbitrary regions in the
plane. Wegmann!?14:1% proposed a scheme to compute
the conformal maps from canonical domains onto simply

and doubly connected regions with smooth boundaries.
This technique has been applied to determine the coor-
dinate maps needed for a realistic elliptic jet flow cross
section. For polygonal regions, Trefethen'®:!” has devel-
oped an efficient software package, SCPACK, to deter-
mine the conformal map and its inverse from the intenor
of a polygon onto the unit disc. SCPACK has been ap-
plied to determine the conformal maps needed in the
study of a rectangular jet flow cross section. The details
of the conformal grid geperation techniques are given by
Baty!2, To apply conformal maps, the Rayleigh problem
must be recast in general conformal coordinates. Let
Cartesian coordinates be denoted by (z!,z?), and let
the computational coordinates be denoted by (v',¥%).
Now, let f denote a conformal map satisfying the fol-
lowing relations:

Il =

Re(f(y"' +3v)) (2.5)

and
2 = Im{f(y' +iy?)) (2.8)

Applying eqns. (2.5}-(2.6), the Cauchy-Riemann equa-
tions, and the general tensor form of (2.2) then yields
the generalised Rayleigh equation in terms of (v',¥?):

) .
(& - g0)p+ JT%WVW vp=0 (2.7)

where 2
i o= 1+l

2.2 The Hybrid Method

This section develops a hybrid numerical scheme
to solve the inviscid, incompressible stability problem
defined by eqn. (2.2). Hybrid techniques are numeri-
cal methods which combine series approximations with
finite difference calculations. For two dimensional par-
tial differential equations, such as the stability problem,
bybrid methods generate discretisation matrices whose
order varies linearly with the approximating series sum-
mation bound, N. This implies that the number of op-
erations required to compute an eigenvalue of equation
(2.2) is on the order of:

O(N?) (2.8)

The estimate given by (2.8) is a great improvement
over the number of operations required by spectral and
pseudospectral methods. These series methods gener-
ate discretisation matrices from two dimensional series
appraximations and produce matrices whose size is pro-
portional to:

(N +1)? (2.9)



Equation (2.9) implies that these methods require a
pumber of operatiom on the order of:

O((N +1)°%) (2.10)
to compute an eigenvalue of the Rayleigh problem.
Furthermore, bybrid techniques have the advantage
of increased accuracy over purely finite difference ap-
proaches. The accuracy of a hybrid scheme depends on
the properties of the approximating series and on the
accuracy of the finite difference scheme. The present
study uses 2 pseudospectral series to develop a hybnd
scheme.

A pseudospectral series assumes that the function
to be approximated is known, or may be computed, on
a fixed set of points in the computational domain. This
information is then used with an appropriate set of basis
functions to form a finite series approximating the func-
tion. Basing the function’s approximation on a known
set of points defines a grid in the computational domain.

The hybrid method presented here is defined using
a pseudospectral series based on the Chebyshev poly-
nomials. The details of the pseudospectral technique
come from the one dimensional pseudospectral theory
in Gottlieb et al'®.

To outline the method, consider the Rayleigh
eqn. (2.8). Assume that the function to be approxi
mated may be represented in a series of the form:

N
Byt v s Y elul v fily')

i=0

(2.11)

Here y! representa the azimuthal variation, while y? rep-
resents the radial variation in an arbitrary jet cross sec-
tion. In eqn. (2.11), the coefficients a(y},y?), are func-
tions of the grid points defined by:

le_ = COG(INl) for ]. =0,12,..., N (212)

and the radial direction, y?. Moreover, the basis func-
tions, f;, are rational functions defined by:

(1= (¥1)2) TR () (=1P*1)
N - yT)

fiy') = (2.13)

with

and

g = 1 otherwise.

Here, Ty (y') is the derivative of the N** order Cheby-
shev polynomial Evaluating (2.13) at the grid points
leads to the relation:

L) = b

where §;; is the Kronecker delta.

(2.14)

Next, substituting eqn. (11) into the Rayleigh equa-
tion, yields:

N

N
el VW) + > eyl vA) YY)
=0 =0
N aw N
+ ﬁ{% S alyl W)Y + gﬁza'(y.-‘.y’)/;(y‘)}
v=0 +=0
N
- a’ Za(y;’,y’)f.(y‘) =0 (2.15)
=0
where 20
p = w—aW

To simplify this equation, the derivatives of the approx-
imating basis functions at the grid points must be de-
termined. Reference 18 gives these derivatives as:

& fily*) -

FTUS LI (DP):\' (2~16)
where
e (=1
(Dl),'.' C."((y} _) y}) i 7# (2.17)
e
1 P
(D ):':' 2(1 - (y;)z) (2-18)
(D)oo = Z_Ifﬁ—‘—l (2.19)
(DY)nw = —{D")oo (2.20)
and where
(D7) = (D) (2.21)

Now, combining eqns. (2.16)-(2.21), eqn. (2.15) and ap-
plying eqn. (2.14) produces a system of linear, second or-
dinary differential equations in terms of the coefBcients:
, 2a ow L2
a" (v, v?) + {w-—_-m— } a—y‘zﬂl(ykl v’

N
~ galalvh ) + sty D)

=0
2a oW ad

22 TS ey, )P =0 (222)

w—aW '’ dy!

+ 4

+=0



“he eqns. (2.22) are then recast as a collection of first
rder systems. This collection of systems of first order
quations can then be recast as a matrix equation with
ire unknown vector being the coefficients of the approxi
yating series. The resulting matrix equation may be in-
~gv-ted once the boundary conditions are determined
n added to the matrix equation.

.3 The Boundary Conditions

In order to evaluate numerically the discretisa-
‘on matrix associated with the Rayleigh equation, the
sundary conditions must be included. In the region
atside of the mixing layer, the velocity is constant, re-
‘1cing the Rayleigh equation into the Helmbolts equa-
nn:

(A-§a®)p = 0 (2.23)

>llowing Batchelor and Gill'?, the general solution of
n. (2.23) in polar coordinates for the exterior region
- given by:

Z (AnHp(Sar) + B, H?(iar)) exp(ind)

n=0

(2.24)

‘here H} and H? denote Hankel functions of the first
-d second kind respectively. Using the condition, (2.3),
‘13t the pressure must approach zero as r approaches in-
~ity, implies that the boundary condition on the outer
{ge of the jet flow cross section is of the form:

p = Y AnHp(iar)exp(inf)

n=0

(2.25)

/oreover, since the pressure must be bounded as r ap-
f'oaches sero, condition (2.4), the boundary condition
4+ the inner edge of the jet flow cross section becomes:

p = ZBan(iar) exp(inf)

n=0

(2.26)

"'here J, is the Bessel function of the first kind. Next,
',‘e physically realisable asimuthal terms are determined
’ order to simplify eqns. (2.25)-(2.26). All the jet ge-
"!netriea to be computed in this study are symmetrical
‘;'l.ouc both the horisontal and vertical axes in the plane.
‘ !lus, from Morris®, the possible pressure variations in
'e azimuthal direction correspond respectively to four
_nsses of functions depending on symmetries about the
II\jor and minor axes. This then gives the general solu-
‘n for the physically possible boundary solutions. The
-ulting infinite series defining the pressure boundary
nditions on the edges of the shear layer cross section
~ome:

z AnCn(iar) cos{2nf)

n=0

(2.27)

i A.Ca(iar)sin{(2n + 1)6) (2.28)
i A, C.(var)sin((2n + 2)6) (2.29)
i An.Cn(sar)cos((2n + 1)§) (2.30)

n=0

where C, represents either J, or H}. Now, recalling
that the jet flow cross section is assumed to be symmet-
rical about both axes, allows the computation to be re-
stricted to the first quadrant in the physical plane. The
standard computational domain for this physical region
will be a rectangle. On the edges of the computational
rectangle which correspond to a constant radial value,
the functions defined by eqns. (2.27)—(2.30) will be ap-
plied. Before these boundary conditions are evaluated
in computational space, they are transformed in terms
of the computational coordinate system using the met-
ric generated by the conformal mapping. On the verti-
cal edges of the computational domain, which represent
lines of constant angle, the boundary conditions are de-
termined by the sysmmetry conditions. If the pressure
fuctuation is not symmetrical about an axis, that is, if
it changes sign across an axis, then the corresponding
boundary condition becomes:

p = 0 (2.31)
However, if the pressure fluctuation is symmetrical
about an axis, that is, the sign does not change, the
pressure boundary condition becomes:

dp

% -

(2.32)
Notice that the boundary conditions defined by
eqns. (2.27)-(2.30) for the horisontal edges of the com-
putational domain are consistent with the boundary
conditions imposed on the vertical edges of computa-
tional domain.

The matrix equation may be integrated explicitly in
the radial direction once the boundary conditions have
been converted into the appropriate initial conditions.
The boundary conditions on the horisontal edges of the
computational domain are converted into initial condi-
tions using a generalised shooting method. Let N de-
note the summation bound for the approximating series.
Then there are N — 1 interior grid points. On the lower
edge of the computational domain, the first term and its
derivative from the exact series solution as given above
are evaluated. This becomes the initial condition on the



lower boundary. The matrix containing the system. of
differential equations is then integrated to the geomet-
ric center of the computational domain, yielding Vi.
At each step in the explicit integration procedure the
boundary conditions on the vertical edges of the com-
putational domain are satisfied by solving for the first
and last coefbcients of the approximating series or its

derivative.

On the upper edge, the first term in the exact se-
ries solution and its derivative are evaluated also. Then
these values are used to integrate the matrix equation
to the center of the computational domain, producing
VY. This process is repeated for each term in the series
using N — 1 terms from the exact series solutions on the
horizontal edges of the computational domain.

The resulting integrated solutions and their deriva-
tives are then matched at the center of the domain. The
matching is accomplished by requiring that a linear com-
bination of the 2(N — 1) solutions be equated to sero:

N=-1
ST(RVE+SY) = 0

=1

(2.33)

Requiring that eqn. (2.33) have a non-trivial solution
then forces the determinant of the matrix of integrated
solutions to be sero. Recalling that the solution vec-
tors are implicit functions of a fixed real frequency and
some guessed complex wavenumber implies that a Jocal
scheme may be used to determine the wavenumbers. In
this study the Newton-Raphson scheme was used.

Once a wavenumber or eigenvalue of the Rayleigh
problem has been computed, its corresponding eigen-
function may be determined. The hybrid method com-
putes an eigenfunction as it integrates the initial condi-
tions from the edges of the shear layer to its geometnc
center. However, the relative weighta of the integrated
solutions are not known. These weights are precisely the
coefficients which force the solutions and their deriva-
tives to match in the shear layer.

Recall that this matching is given mathematically
by eqn. (2.33), where R; and S; are the unknown coefh-
cients. These coefficients may be determined by recast-
ing {2.33) in the form:

TORE

After the matching coefficients are determined they
are used to scale the initial conditions. The Rayleigh
problem is then integrated a final time using the scaled

(2.34)

initial conditions and the pseudospectral amplitudes,
a(y*;, v?), are stored along each radial grid line. There-
fore, the eigenfunction is approximated discretely in the
radial direction, and by 2 series in the azimuthal direc-

tion.
2.4 The Mean Velocity Proflle

The mean velocity profile used in the computa-
tions is based on a generalisation of the profile given by
Michalke?. For the round jet Michalke chose 2 velocity

profile in the mixing layer of the form:

Wir) = %(1+tanh(—2}%[1— %1)), (2.35)

§
forR—-2-<r<oo

where R is the jet radius, 6 is the momentum thickness
and § is a fixed real number satisfying:

(2.36)

é
tanh( ~ o1

W
Notice that the velocity profile defined by eqn. (2.35)
is only a function of the radial direction. Furthermore,
since conformal maps are being applied to generate the
computational coordinates, (v',y?), the radial coordi-
nate, y?, will be uncoupled from the asimuthal coordi-
nate, y!, allowing 2 general velocity profile to be ex-
pressed in terms of y?. To generalise eqn. {2.35), let f
denote a conformal map carrying a standard computa-
tional rectangle onto the first quadrant of a jet flow cross
section. Also, let f(y' +1y?) denote the minor axis of
the jet cross section in terms of the computational co-
ordinate system. Then in terms of f the generalized
velocity profile is defined as:

1 B fly? +1y?
W) = 5(”‘“"‘%“' fiiwizi”)-
, (2.37)
for y? < y? < oo,

where y? is the half velocity point, B is the length of
the minor axis, 65 is the momentum thickness on the
minor axis, and y? is a real value satisfying:

B, _ ' +iy.-’)]
bp flyt +1v2)

The momentum thickness used in the generalized mean
velocity profile is defined on the minor axis by:

tanh( SR (2.38)

g = / PW(1—W)dy for z=0 (2.39)
0



\s an example of 3 pon~circular mean velocity profile,
f the function acos(y’ + 1y?) is used to generate the
>hysical coordinates, the mean velocity profile defined
vy eqn. (2.37) reduces to:

B sinh(y?
W(y?) = %(1""‘“‘}1('2_9;‘1— m—%l)), (2.40)

for y? < y* < co.

~he next section will outline test results for the stability
‘nde using the velocity profiles defined in this section.

3.0 NUMERICAL RESULTS

In this section the generalised Rayleigh problem
‘overning the linear inviscid stability of incompressible
rts of arbitrary geometry is solved using the hybrid
~heme described in the previous section. To consider
rts of arbitrary geometry, conformal transformations
rave been used to map standard computational domains
.nto jet flow cross sections in physical space. Calcula-
ions are performed for the stability of the annular shear
ayer region of rectangular and non—confocal elliptic jeta
-f aspect ratio 2. These calculations are performed for
vzimuthal normal modes corresponding to the flapping
‘nd varicose instabilities observed in non—circular jets.
% addition, examples of the eigenfunctions for these
‘ases are shown. Firstly, the validation of the stability
:5de, by comparison of its results to benchmark calcu-
itions for the round and confocal elliptic geometries, is
7iven.

*.1 Code Veriflcation

The stability code has been validated numerically
'ar several different geometries and boundary condi-
'ions. The series of numerical tests performed involved
smputing the eigenvalues associated with the maxi-
‘sum rate of growth for the flapping and varicose as-
nuthal normal modes of incompressible circular and
‘nnfocal elliptic jets. These results have been compared
“~ the results of Morris®, who computed the wavenum-
‘iers associated with the maximum growth rate for in-
“hmpressible confocal elliptic jets.

In order to compare the present computation with
“{orris’® results, a relative error is introduced. Define:
Iap — ap)

%Error = ——la—b—i_— (3.1)

“here a,, are the current results and ay are the published
~sulte.

For the circular case, the complex exponential map
* used to generate the grid for the generalized Rayleigh

problem. The mean velocity profile used in this com-
putation is given by eqn. (2.35) above. In all the test
cases the momentum thickness on the major axis, 4,
is taken to be 0.02, as in ref. 9. Also, all the computa-
tions assumes geometries such that the velocity profile
satisfies:

001 < W < .999 (3.2)

in the shear layer. Table 1 compares the wavenumbers
computed using the hybrid technique, for the aspect ra-
tio 1 case, with those of ref. 9 for the aspect ratio of
1.001.

i Mode | Freq ! Hvbrid \ Morris %Error |
[V e 10.20:-5.6611 | 10.199-5.685 007
' Fa (3433 | 10244-5.682 | 1023856491 | 0.06 j

Fs 5.456 | 10.252.3.6521 , 10.243-5.6511 | 008 |
Table 1  Aspect ratio 1.0 results for the hybnid

method compared to previous calculations®.

In Table 1, F4 and Fp represent asimuthal flapping
modes about the major and minor axes respectively,
while V represents the varicose asimuthal mode. The
results of the stability code are approximately indepen-
dent of the number of collocation points in the asimuthal
direction. For the circular case, a Runge-Kutta integra-
tion scheme is used with a fixed step—sise of 0.004.

For the confocal elliptic case, the complex cosine
function is used to calculate the grid for the general-
ised Rayleigh equation. This coordinate transformation
generates elliptic cylindrical coordinates in the physical
plane, as used in ref. 9. The confocal elliptic thin shear
layer calculations have been performed for the aspect
ratio 2 case. The mean velocity profile used in both cal-
culations is a special case of the general profile of the
last section and is given by eqn. (2.40). Table 2 com-
pares the results of the hybnd method to the results of
ref. 9 for the aspect ratio 2 confocal elliptic shear layer.

{ Mode Freg Hvbric Morrie %Errer |
v l 5.637 10.156-4.496: 10.135-4.50% 0.2
Fa l 5.010 ©.307-3.6641 9.322-3.677¢ 0.19
Fg i 5.657 10.045-4.4721 10.027-4.5071 0.35
Table 2 Aspect ratio 2 results for the bybrid method

compared to previous calculations®.

The step size is 0.006 for the aspect ratio 2 case. For
the aspect ratio 2 confocal elliptic shear layer, the resuls
shown are computed with 7 interior collocation points.
If less than 4 interior collocation points are used the



computed wavenumbers exhibit a large error in compar-
ison with the benchmark values. Conversely, if a large
pumber of interior collocation points are used, say above
9, it becomes very difficult to locate the wavenumbers
associated with the maximum growth rate. By adding
more interior points to the computation, two distinct
limiting processes are affected. Firstly, the approxima-
tion of the eigenfunction becomes more accurate because
more geometric information about the pbysical domain
is supplied to the approximation. Secondly, the func-
tions defining the boundary conditions on the edges of
the shear layer become more accurate by including terms
which Buctuate more rapidly in the asimuthal direction.
It is believed that adding solutions which represent the
rapidly fluctuating asimutbal terms to the integrated
discretization leads to a determinant minimisation prob-
lem which is ill—conditioned. Presently, this represents
the main dificulty found in solving the Rayleigh prob-
lem with the hybrid method. Since the generalised
shooting technique couples the geometry and the bound-
ary conditions, one possible way of correcting the prob-
lem would be to normalize appropriately the determi-
nant equation before it is minimised. No further work
on this problem has been attempted in the present study.

In the analysis of the instability of jets of arbitrary
geometry the eigenfunctions associated with the com-
puted wavenumbers may also be determined. Recall
that in this case the eigenfunctions correspond to the
pressure function, p. All the other field variables may
be related to this function. Thus, once the pressure
eigenfunction is known, the distributions of the velocity
components associated with instability waves or large
scale coherent structures are determined completely.

The technique for the evaluation of the eigenfunc-
tions was described in Section 2.3.
checks have been performed in analysing the resulte of
the eigenfunction calculation for the round jet. Firstly,
the stored integrated solutions have been shown to
match at the geometric center of the computational
domain. Secondly, the computed constants, given in
eqn. (2.34) which weight the initial conditions have been
checked to verify that the code is predicting the funda-
mental instabilities for the varicose and flapping modes.
For both of these numerical tests the code performed
well. Further numerical checks have shown that the code
also predicts correctly the higher order modes.

Two numerical

As a verification of the eigenfunction calculation
procedure the eigenfunctions for the varicose {axisym-
metric) and fapping (belical) instabilities of the round
jet have been computed. The corresponding eigenvalues
are given in Table 3. The eigenfunctions are shown in
Figs. 1 and 2 in the form of iso~pressure contours. The

contours are plotted for the fundamental varicose and
fapping instabilities given by eqn. (2.1) with 7 equal
to 0. All the contours shown are for positive values as
there are no negative values for the sero phase case. Be-
low, when the eigenfunctions are shown for the elliptic
and rectangular cases the positive and negative contours
are shown separately. These plots further assume that
the pressure field is pormalised by the modulus of its

maximum value.

Mode Freq Wavenumber ]
Vv 5.44 10.20-5.684
Fa 5.45 10.24-5.651

Table 3 The frequencies and wavenumbers used to
compute the eigenfunctions associated with the round
jet.

The eigenfunction for the fundamental varcose
mode is shown in Fig. 1. In this case the derivative of
the pressure with respect to the azimuthal direction is
sero on both axes. Moreover, as expected, the pressure
contours show little asimuthal variation. The minor ai-
imuthal variation in the pressure eigenfunction indicates
that the eigenfunctions contain very small contributions
from higher order modes.
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Fig. 1 Iso-pressure contours for the varicose mode:
circular jet case, 7 =0. (Positive contours only shown)

The contour plot for the fundamental 8apping in-
stability about the borisontal axis is shown in Fig. 2. For
this mode, the pressure contours should be symmetrical
about the vertical axis and sero along the horizontal
axis. For both of these examples, the hybrid method
works well in predicting the properties of the normal-
ised pressure shape function.



MU ad e b b s

*ig. 2 Iso—pressure contours for the Sapping mode:
-ircular jet case, v = 0. (Positive contours only shown)

3.2 Stability Calculations

For the numerical experiments, a non—confocal el-
iptic shear layer and a rectangular shear layer of aspect
-atio 2 are chosen. Both of the jet shear layers are non-
{imensionalised by requiring that the semi-major and
remi-minor axes, A and B, sa't.isfy:

4
B

VAB=1 (3.4)

slong the half velocity line in the shear layer. Further-
nore, both cases assume the hyperbolic tangent mean
selocity profile defined by eqn. (2.37). Al numerical
‘ests have been performed assuming a constant mo-
‘nentum thickness of 0.02 in the computational domain.
'n the physical plane this results in a non-uniform as-
‘rnuthal variation in the momentum thickness: the mo-
‘nentum thickness on the minor axis being greater than
'hat on the major axis. This corresponds to the experi-
'nental profiles observed by Seiner et al*! for an elliptic,
“epect ratio 2, supersonic jet.

=2 (3.3)

ind

The first step in analysing the instability of the
ton—circular jets is to compute the complex wavenum-
liers or eigenvalues for a set of real frequencies. The
ases considered are the varicose and flapping asimuthal
thodes. The flapping case is for flapping about the
“1ajor axis. The wavenumbers are computed by fixing
+ frequency and then making an initial guess for the
wavenumber. A Newton-Raphson iterative scheme is
wsed to locate the eigenvalues. The computed wavenum-
“ers and their corresponding frequencies are used to de-
‘armine the local growth rate and phase velocity for the
‘nstabilicy waves.

For the shear layers considered, the hybrid method
was run with both § and 7 interior collocation points.
The difference between wavenumbers for these cases is
typically in the second and third decimal places. All
the calculations for the elliptic shear layer are based on
7 interior collocation points, while those for the rect-
angular shear layer are based on 5 interior collocation
points. Figure 3 shows the variation of the axial growth
rate with frequency for the varicose mode of the aspect
ratio 2 elliptic jet. The maximum growth rate is slightly
lower than that determined for the confocal elliptic shear
layer: see Table 2. The variation of the phase velocity,
given by w/a,, for this case is shown in Fig. 4. This re-
sult is typical of all the calculations for both the varicose
and flapping instabilities in the elliptic and rectangular
jet cases. For the varicose instability there is generally a
slight decrease in the phase velocity at low frequencies.
However, in all the cases considered, the phase velocities
of the instability waves are approximately 60 percent of
the centerline velocity, These resuits are in agreement
with those of Koshigoe and Tubis'®1%.

4.0 -1
3.0 A ////L\“\\
/
/
-a, 2.0 - //
!
1.0 d
6.0 {-— r T 1 T 3l
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w
Fig. 3  Variation of the axial growth rate with fre-

quency. Elliptic jet, aspect ratio 2, varicose mode.

To determine the most unstable mode the three
largest growth rates were interpolated using a second
order polynomial. Table 4 shows the frequencies of the
maximum growth rates for the elliptic jet.

Mode Freq Wavenumber
14 4.49 7.86-3.501
Fyu 4.16 7.75-2.95s

Table 4  The frequencies and wavenumbers used to
compute the eigenfunctions associated with the non-
confocal elliptic jet.
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Fig. 4  Variation of the phase velocity with frequency.

Elliptic jet, aspect ratio 2, varicose mode.

Figure 5 shows the variation of the axial growth
rate with frequency for the varicose mode of the aspect
ratio 2 rectangular jet. The maximum growth rate is
much lower than that for the elliptic jet. In addition,
the frequency for the maximum growth rate is also re-
duced. Table 5 shows the frequencies for the maximum
growth rates for the varicose and flapping instabilities.
This frequency should give an indication of the initial
vortex shedding frequency for the jet. It is not clear
whether the calculated reduction in this frequency for
the rectangular jet is due to the change in the geometry
or to the distribution of momentum thickness around
the jet. This question is being addressed by the authors
in additional calculations.

4.0 4
3.0 4
-a 20 -
//\\
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e ~
0.0 t———r——; - Y T ]
0.0 2.0 4.0 6.0 8.0 10.0
w
Fig. § Variation of the axial growth rate with fre-

quency. Rectangular jet, aspect ratio 2, varicose mode.

As a final calculation we consider the pressure
eigenfunctions for the elliptic and rectangular jets. Fig-

Mode Freq I Wavenumber_!
Vv 3.16 5.71-1.92:
Fa 2.90 5.46-1.98¢

Table 5  The frequencies and wavenumbers used to
compute the eigenfunctions associated with the rectan-
gular jet.

ure 6 shows the iso—pressure contours for the most un-
stable varicose instability in the elliptic jet and Fig. 7
shows the corresponding contours in the rectangular jet
case. Positive contours are shown in the upper half of
the figure and negative contours are shown in the lower
half. The sero contour appears in both. The most

potable feature in both figures is the lack of regular-
ity, compared to the circular jet contours shown above.
The pressure fluctuations are confined to several regions
with no apparent relationship to the particular geome-
try. Very similar distributions are found for the flapping
modes so that they are not shown here.

Fig. 6  lso—pressure contours for the elliptic non-
confocal jet. Aspect ratio 2, varicose mode, 7 = 0. (a)
positive contours, (b) negative contours.
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Fig. 7 Iso—pressure contours for the rectangular jet.
Aspect ratio 2, varicose mode, v = 0. (a) positive con-
tours, {b) negative contours.

Though the contours of equal pressure level show
no apparent structure this is not the case for the con-
tours of equal Reynolds stresses and their gradients. In
the rectangular jet case the distributions indicate that
the jet is developing initially as two independent two—
dimensional shear layers. Whereas, in the elliptic jet
case there is a continuous variation from the major to
the minor axes with the dominant fiuctuations, for the
modes considered being close to the major axis. Fur-
ther details are contained in ref. 12 and will be reported
elsewhere.

4.0 Summary

This paper has presented a calculation procedure to
determine the stability of jets of arbitrary cross sections.
Calculations have been performed for elliptic and rect-
angular jets. Both eigenvalues and eigenfunctions for
the pressure have been calculated. The velocity com-
ponents may be obtained from the pressure using the
linearized equations of continuity and momentum. In
turn this enables the second—order statistics, including
the normal and shear stresses, associated with the in-

10

stability waves to be calculated. If it is argued that the
mixing process in free shear layers is dominated by large
scale structures and that, locally, they may be modeled
as instability waves, these second—order statistics are all
that is needed to provide a turbulence closure scheme.
This technique is presently being developed by the au-
thors.

The calculations presented here are for incompress-
ible flow. They are readily extended to the compressible
flow case and examples of this calculation are contained
in ref. 12. In addition, this reference contains details
of the conformal mapping techniques as well as calcu-
lations of the velocity, Reynolds stress, and Reynolds
stress gradient distributions. These calculations are be-
ing used by the authors to help understand the axial
development of non—circular jets. The results of this
analysis will be presented later.

This work was supported by NASA Langley Re-
search Center under NASA Grant NAG-1-857. The
technical monitor is Dr. J. M. Seiner
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ABSTRACT

The shock structure in non—circular supersonic jets
is predicted using a linear model. This model includes
the effects of the finite thickness of the mixing layer and
the turbulence in the jet shear layer. A numerical solv-
tion is obtained using a conformal mapping grid genera-
tion scheme with a hybrid pseudo-spectral discretization
method. The uniform pressure perturbation at the jet
exit is approximated by a Fourier-Mathieu series. The
pressure al downstream locations is obtained from an
eigenfunction expansion that is matched to the pressure
perturbation at the jet exit. Results are presented for
a circular jet and for an elliptic jet of aspect ratio 2.0.
Comparisons are made with experimental data.

1.Introduction

Broadband shock associated noise is one of the ma-
jor components of the noise of supersonic jets operating
at ofl-design conditions. As a result, in recent years, ef-
fort has been focussed on understanding the characteris-
tics and the generation mechanisms of broadband shock
associated noise. The early work of Harper-Bourne and
Fisher! has been followed by 2 number of experimental
and theoretical studies on this topic. Investigations have
been conducted by Tanna?, Seiner and Norum?+*, Seiner
and Yu®, Norum and Seiner®’ and Tam and Tanna®
among others. The noise generation mechanism pro-
sosed by Tam and Tanna® was used by Tam® to develop
a1 stochastic model for broadband shock associated noise.
“{e obtained very good agreement with experiments for
-he near and far field noise spectra and directivity. In
ais study the shock cell structure was modelled using the

method of multiple-scales of Tam, Jackson and Seiner!®.

Recently there has been considerable interest in
aon-circular supersonic jets with a view of achieving bet-
er mixing characteristics and a reduction in radiated

+ Graduate Assistant, Department of Aerospace
Zngineering, Student Member AIAA.

4 Present Address, Senior Member of Technical
:taf, Sandia National Laboratories, Albuquerque, NM
7185, Member AIAA.

ss Professor, Department of Aerospace Engineer-
ag, Senior Member AIAA.

=11 © 1990 American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.

noise. There has been some progress in the develop-
ment of supersonic jet noise theories for mon- circular
jets. Tam!! used a vortex-sheet model for the jet and
predicted the screech tone frequencies in rectangular and
elliptic jets. Morris, Bhat and Chen’? used a bound-
ary element method to predict the shock cell structure
and screech tone frequencies in jets of arbitrary geome-
try. Once again, a vortex-sheet model was used to de-
scribe the jet. Morris and Bhat’® extended their anal-
ysis of pon-circular geometry jets Lo include the cfiects
of Bnite mixing layer thickness using realistic and con-
tinuous mean velocity and density profiles. They also
included the dissipative effects of the small-scale turbu-
lence through the addition of eddy-viscosity terms in the
momentum equations. However, they encountcred some
convergence problems with their numerical technique.

In this paper, the shock cell structure of non-
circular supersonic jets is modelled using 2 linearized
analysis. In the present study a new numerical scheme is
introduced. This method uses conformal mapping with
a pseudo-spectral hybrid discretization scheme. This
work is an attempt by the authors to develop models
with a robust numerical scheme to predict the shock
cell structure in an eficient manner. The physical mode}
used here is similar to the one used earlier by Tam, Jack-
son and Seiner'® and Morris and Bhat!®. In the latter
case a body-fitled coordinate system was used to set up
the problem for non-circular geometry jets. Bowever,
this scheme had convergence problems. The new nu-
merical method uses the conformal mapping technique
developed by Wegmann'* and used by Baty!® in his
analysis of the inviscid instability of arbitrary geometry
jets. This method transforms the physical space to 2
rectangular computational domain using a series of con-
formal mappings. In the computational space, the flow
variables are represented in a series form using 2 hybrid
pseudo-spectral approximation.

The next section outlines the development of the
governing equations in terms of a general conformal co-
ordinate system. A description is also given of the im-
plementation of the conformal mapping technique. The
discretization of the model differential equations using 2
hybrid pseudo-spectral scheme is also described. Section
3 describes the application of these numerical techniques
to the shock cell problem. In section 4, predictions are



presented for a circular et and an elliptic jet of aspect
ratio 2.0. Also, comparisons are made with experimen-
tal data.

2. ANALYSIS

The cross-section of the initial region of a jet con-
sists of three regions: the potential core of the jet, the
annular mixing region and the ambient fuid surround-
ing the jet. In the potential core and in the ambient
fluid, the solutions to the linearized governing equations
can be obtained analytically. However, in the annular
mixing region, where the mean velocity and density of
the jet vary, the solution must be obtained numerically.

The mode) used here for the shock cell structure is
that developed by Tam, Jackson and Seiner!'® for circu-
lar jets. This mode! takes into account the Gnite thick-
ness of the mixing region and the effects of turbulence in
the jet shear layer. A finite-difference technique using a
pseudo-spectral hybrid scheme in conjunction with con-
formal mapping is used here to extend the model to a
study of the shock cell structure in non-circular super-
sonic jets.

2.1 Governing Equations

The non-dimensional linearized governing equa-
tions for the shock cell structure, in Cartesian tensor
notation, are given by:
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The reference scales are r,, the equivalent radius of the
fully expanded jet and U;, p;, and p;, the fully expanded
jet velocity, density and pressure, respectively. p and W
are the mean density and axial velocity of the jet. The
quantities with a superseript S correspond to the per-
turbations associated with the shock cell structure. M;
is the fully expanded jet Mach number. The assump-
tions made in deriving the linearized equations given
above are discussed in detail by Bhat!®. The mean ve
Jocity is assumed to be known, either from experiments
or predictions. lt is also assumed that the mean fiow is
independent, locally, of the axial distance. The turbu-
lent Reynolds stresses in the momentum equations have
been modelled using a simple eddy viscosity model. The
turbulent Reynolds number is given by, Re = Usrs/v
where v, is the turbulent eddy viscosity. The shock cell
structure is modelled as spatially periodic waves that

are time-independent. Using the locally parallel flow
approximation, the perturbation quantities associated
with the shock cell structure can be represented in a
separable form with a periodic variation in the axial di-
rection. This 1s given by,

1S (21, 72, 23) = f(z1, 72) exp(iazs) (2.4)

where f< is any flow perturbation quantity and a is the
complex axial wavenumber.

The linearized eqns. (2.1)-(2.3) are written in terms
of a Cartesian coordinate system. These equations must
be transformed in terms of a general, nonsingular curvi-
linear coordinate system, (v, y2) in the ¢ross-sectional
plane. This coordinate change can be performed by ex-
pressing the difierential operators in (2.1)-(2.3) in gen-
eral tensor form. These are obtained using the ap-
proach of Eiseman’”, with the axial coordinate given
by, T3 = y3. The shock cell structure equations in a
general coordinate system are then given by,
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where, g = det(g;;) and gi; 1s the metric tensor. The
metric tensor and its inverse g'’ are defined as,
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The transformation of eqns. {2.5)-(2.7) in physical
space to a simple computational domain is accomplished
using a inverse conformal mapping technique. The for-
mulation is similar to that given by Baty'® and is out-
lined briefiy here. Consider a computational domain, &,
in the complex plane (i, y2). Let f be an analytic map-
ping which maps R onto a given jet Bow Cross-section
in the physical space (z1,22). Itis assumed that f has
a nonzero derivative, i.e.

fliz}=f'lw + iys) #0 forall ze€ R {2.11)



“he relation between the coordinates (y;,ys) and
z;,3,) generated by f(z) is given by,

1(z) = Hw +iya) = 21 +122 (2.12)

“he analytic mapping [ satisfies the Cauchy-Riemann
-quations,
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‘he components of the metric tensor, g,; are given by,
gn=9='(2)° @2=90=0 (2.15)

“he components of ¢', the inverse of g,,, are given by,
1
91] — 972 - — and 912 = 921 =0 (2.16)

Then, the resulting equations for the shock cell
iructure in general conformal coordinates can be writ-
en,
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nere A is the standard Cartesian Laplacian in terms
the coordinates (y;,y2). The conformal mapping is
:nerated numerically and the method is described in
.e next section.

.2 Conformal Mapping

Let P denote a given jet Bow cross-section in the
aysical space and C be the unit annulus with some in-
-ior radius, g, such that 0 < p <1. Let W be the
aformal mapping such that C is mapped onto P. As
z desired computational domain is rectangular, an-
aer mapping must be used to map the rectangular
zion K onto the annular region C. This is given by the
Donential mapping exp(1z). The rectangular compu-
zional domain in coordinates (y;, y2) is given by,

S=(vi,1) €ER*:a <y <10y <A (2:20)

a, n and B are finite real pumbers and 8 is positive.

The discretization for the finite-difierence scheme,
discussed below, involves an approximating function de-
fined on the interval [—1,1] in the*azimuthal’ direction,
vi. This requires a linear coordinate transformation of
the form

v = As; + B, and y2 = 82 (221)

with the transformed rectangular computational domain

defined by:

B=|(s,0) €R?:-1<s, £1,0< 8, < gl (2.22)
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Fig. 1 Schematic of the transformation from the
computational domain £ to the physical space P

A and B may be determined once the dimensions of
the rectangular domain R are known. The vanous steps
involved in mapping the rectangular domain £ onto the
physical space P are shown schematically in Fig. 1. The
Wegmann mapping, W, needs to be determined next.



Let ¢; (1=1,2) denote the doubly connected region with
smooth closed boundaries. Here, the subscript 1 refers
to the inner (s = 1) and outer (i = 2) boundaries of the
given jet flow cross-section. lt is assumed that ¢; can be

parameterized by

z(t) on 0Zt<A for v=1,2 (2.23)

where z; is a smooth regular curve. The aim of the
;nethod is Lo determine a mapping ¢; such that the
boundaries of the annulus C are mapped onto ¢;. This
involves determining the image of a point on the unit an-
nulus on the boundary of the jet cross-section. As both
the jet cross-section and the annulus are known smooth
functions, only the angle 6 of a point on the annulus
needs Lo be known to determine the angle, say r{6), of
its image satisfying:

g:("®) = 2i(r:(6))
The Wegmann method'! solves for the function, 7,
which s also known as the boundary correspondence
function. Any real function r(f) satisfying eqn. (2.24)
and
B

5;6. ﬂ" € R
that is 27 periodic is defined to be 2 boundary corre-
spondence function. The image r(6) is determined by
satisfying eqns. (2.24)-(2.25). This is obtained itera-
tively starting from a good guess ¥ and determining the
correction factor 5 such that,

(2.24)

7(6) - (2.25)

=7+ (2.26)

For the doubly connected region, there will be two
boundary correspondence functions for the two edges
of the shear layer. The interior radius of the annulus
is also unknown, and must be determined. It is found
that good initial guesses for both the boundary corre-
spondence functions and the interior radius are required
to obtain quadratic convergence. The details of the it-
erative scheme can be found in Wegmann'* and Baty!®.
The conformal mapping is generated numerically using
the Cauchy Integral Theorem after the boundary corre-
spondence problem is solved.

Once the mapping is completed it is necessary to
discretize the governing equations given by (2.17)-(2.19)
in the computational domain. A hybrid technique which
combines a series approximation with a finite-difference
technique is used here. Let the functions to be approxi
mated, in the present case the perturbations associated
with the shock cell structure, be represented in 2 series
of the form:

N

$(v1,v2) = Z a{vii, v2) fi(w1),

=0

(2.27)

with the coefficients a(v1:, y2) taken to be functions of
y; and the basis functions, f, represented in terms of
Chebyshev polynomials defined by,

(1 = v3) T (w) (=11
¢ N3y — vii) '

T (ys) is the derivative of the N*" order Chebyshev
polynomial and the constants ¢, are given by,

(2.28)

filw) =

co=cy=2 and ¢ =1 otherwise. {2.29)

The grid in the y; coordinate direction is defined by,

for 7=0,1,2,..N {2.30)

x
N
The model equations can be discretized readily as the
basis function, evaluated at the grid points, satishes re-
lation

yiy = cCos

filwiy) = &5 (2.31)

where &;, is the Kronecker delta. In the present model
the derivatives of the approximating basis functions at
the grid points must also be determined. These deriva-
tives can be obtained using the relations given by Got-
tlieb et al.}?

The flow variables are all approximated by a series
of the form given by (2.27). The approximating series
are substituted into the governing egns. (2.17)-(2.29).
These equations are then evaluated at the interior grid
points. With the use of eqn. (2.31) a system of linear
ordinary differential equations in the unknown series co-
efficients is produced. The full form of the equations s
given by Bhat?S.

3. Calculation Procedure

When the jet shear layer is of finite extent a numeri-
cal solution to the governing equations must be obtained
in that region. In order to obtain the numerical solu-
tion, the solution of the governing equations in regions
of constant mean flow properties must be found first.
The separable solutions for the Bow variables in a polar
coordinate system may be found using the technique de-
scribed by Morris'®. The solutions for the flow variables
are found to be of the form:
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‘ere, (G,, i, Ug) are the components of the velocity fluc-
sations in the (z,r,8) coordinates. J, is the Bessel
inction of the first kind of order n, H,(,l) is the Han-
o) function of the first kind of order n. These solutions
arve as the initial conditions to the governing equations.
“he boundary conditions along the two bounding radial
aes of the shear layer must also be specified. These
>nditions depend on whether the solutions sought are
id or even about the boundaries. In the present case,
;r a uniform pressure perturbation at the jet exit, so-
.tions are sought that are even about both the minor
ad major jet axes. The boundary and initial condi-
ons are applied in the rectangular computational do-
-ain. The initial conditions are satisfied on the upper

and lower boundaries of the rectangle, which correspond
to the inner and outer edges of the shear layer. The ini-
tial conditions in (r,8) coordinates are transformed in
terms of the computational coordinates using the met-
ric generated by the conformal mapping. The boundary
conditions on the other edges of the computational do-
main, which represent the two bounding radial lines, are
satisfed by solving for the first and last coefficients of
the approximating series or its derivative.

The system of differential equations, derived in the
last section, may be written as six first- order coupled or-
dinary diflerential equations in the unknown coefhicients.
These equations are integrated from the boundaries for
each value of n in the series (3.1)-(3.10). A linear su-
perposition of these solutions is matched at some in-
termediate location in the computational domain. This
results in a system of homogeneous equations in the un-
known series coefficients. The axial wavenumbers are
determined by teroing the determinant of the coefficient
matrix using 3 Newton-Raphson iterative technique.

The mean velocity profile is assumed Lo be given
by:

w(r) =W; exp|— In(2)n?} (3.11)

where n = n/b, where n is measured normal to the edge
of the potential core and b is the local half-width of the
jet mixing layer. For 2 circular jet, n=r—h and the
relationship between the potential core radius h and b
is obtained from the condition of conservation of axial
momentum. This is given by Tam and Morris??. In the
case of the elliptic jet, these values are obtained from the
measured mean velocity profiles?! for an elliptic nozzle
of aspect ratio 2 operating at its design condition of
My=1.52. These data include the mean velocity profiles
along the major- and minor-axes for several downstream
Jocations. By fitting the half-Gaussian velocity profile,
given by eqn. (3.11), the Jocation of the potential core,
h, {alongthe major-axis) and h; (along the minor-axis),
the hali-velocity point, by (along the major axis) and
b; (a2long the minor axis) are obtained at the various
downstream locations. The experimental values of the
half- widths and the potential core radii are shown in
Figure 2.

The half-widths and the potential core radii are
taken to be a linear function of the axial distance. In the
calculations for the circular jet, the growth rate of the
shear layer is taken from the data of Birch and Eggers®?
which is 1.266 times the inverse of the spreading rate of
the mixing layer, c.

The mean density p may be calculated from the
mean velocity using a Crocco’s relationship. The tur-
bulent Reynolds number, based on b, the half-width, is
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Fig. 2 Variation of Shear Layer Parameters with
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set equal to 300. The numerical integration is performed
using a fixed step size fourth-order Run ge-Kutta scheme
with 32 steps in the domain of integration. Calculations
are performed in one quadrant only based on the as-
sumed symmetry of the mean velocity profile about the
major- and minor-axes. In the case of the circular jet,
three interior Jines are used, while for the elliptic jet,
nine interior collocation points are used. The pertur-
bation pressure as a function of downstream distance is
calculated from the pressure perturbation at the nozzle
exit and the axial variation of the wavenumber, a, for 2
given mode. The pressure may be written as

p(z) = f: i{(pm’)o exP[A’ {anr(zl)dzl]}» ("-12)

n=0r=1

where (par)o is the amplitude of the n-r mode at the
nozzle exit and (an,) is the complex axial wavenumber
for that mode. These amplitudes are calculated from 2
vortex- sheet model of the jet.

The vortex-sheet model was proposed by Prandtl?®
and Pack?®*, and extended by Tam and Tanna®. The
weak shock cell structure is modelled as a small-
amplitude disturbance superimposed on an otherwise
perfectly expanded jet. The assumption of weak shock
cells restricts the analysis to supersonic jets operating
at slightly off-design conditions given by

IM? - M3 < 1.0 (3.13)

where M, and My are the fully expanded jet and de-
sign Mach numbers. The relationship between the fully
expanded and design conditions are given by Tam and
Tanna®. The fully expanded jet is represented by a col-
umn of uniform flow bounded by a vortex sheet.

The linearized equation for the pressure perturba-
tion inside the vortex sheet is,

a:ps

57 =0 (3.14)

2.8 2
Vip® - M;

Using elliptic cylindrical coordinates, related to Carte-
sian coordinates by

z = acosh{p) cos(f)

y = asinh(p) sin(f)

and,

N
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N

eqn. {3.14) becomes
2 a2pS a2ps 2 ) s
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The vortex sheet is bounded by the ellipse p = po-

The boundary conditions are

p> = 0 on the ellipse p = po {(3.16)

and,
at z=0,p° = Ap everywhere inside the ellipse p = po

(3.17)
A separable solution is sought in the form,

p°(p,6) = F(p)G(6) (3.18)

The equations for F(p) and G(6) are found to be,

d&*F
T (A —2gcosh2p)F =0 (3.19)
and,
&g
— A-2 260G =0 3.20
29 1 (3~ 29con20)G (3.20
where ) is a separation constant and ¢ = —a’(Mf -

1)a?/4. Equations (3.20) and (3.19) are the Mathieu
and the Modified Mathieu equations respectively with
parameters A and ¢. In general, the solutions of these
equations are given by the four classes of Mathieu and
Modified Mathieu functions. The only solution which is



symmetric with respect to both z and y axes is given
by,

PS (P,a) = Z D,,CCQ,.(P, Q)“7"(9»9) (3'21)

n=0

where, D, is a constant to be determined from the initial
condition, and ce3, and Cey, are the Mathieu and the
Modified Mathieu functions respectively.

The boundary condition (3.16) requires that
Cean(po,g) = 0 and this givea the roots g,.. In cal-
culating po, the dimensions of the fully expanded jet are
used. The pressure perturbation at the notzle exit is
then given by,

oo (-]
PS (P,o) = AP = Z Z Dn,CC2n(P. an)cein(ey Qnr)
n=0r=1
(3.22)
where, Ap is the pressure difference at the noztle exit,
calculated using the one-dimensional isentropic rela-
tions, and is given by eqn. (2.3) in Tam, Jackson and
Seiner!®. By means of the orthogonality property of the
Mathieu functions, the coefficients D, are found to be,
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(3.23)

The integrals are evaluated using the method suggested
in McLachlan®. In the limit, as the aspect ratio tends to
anity, eqn. {3.23) reduces to eqn. (2.1b) given in Tam,
Jackson and Seiner!®. The initial mode amplitude in
eqn. (3.12) is related to Dy, by,

(Pnr)o = Dan‘Qn(P»Qnr)Ccin(exan)) (3'24)

for given values of p and 6.

The calculation procedure may be summarized as
-he following steps. (1) The pressure perturbation at
he jet exit is obtained as a Fourier-Mathieu series ap-
sroximation, egn. (3.22). (2) The axial wavenumber for
1 given mode at a given axial location is obtained from
1 solution of eqns. (2.17)-(2.19) using conformal map-
sing and a hybrid pseudo-spectral discretization. (3)
The pressure associated with the shock cell structure
s calculated as the superposition of contributions from
:ach mode from eqn. {3.12).

4. Results

This section presents the calculations for the shock
cell structure in a circular jet and in an elliptic jet of
aspect ratio 2. In the case of the elliptic jet, the predic-
tions are compared with the experimental data obtained
recently at NASA Langley?!. These measurements are
for an elliptic jet issuing from a nozzle of aspect ratio 2
and operated al several off-design conditions. The de-
sign Mach number of this nozile is 1.52.

Two difierent operating conditions have been con-
sidered - an underexpanded jet (fully expanded jet Mach
number, M; = 1.64, design Mach number, Mg = 1.52)
and an overexpanded jet (M; = 1.36, Mg = 152). It
should be noted that in the earlier work of Morris and
Bhat!?, two diflerent operating conditions (underex-
panded and overexpanded) were considered for the cir-
cular jet. The predictions obtained for these cases were
compared with the experimental measurements of No-
rum and Seiner? and also with the results obtained with
the multiple-scales model of Tam, Jackson and Seiner'®.
The comparison showed very favorable agreement. In
this study, emphasis is placed on obtaining predictions
of the shock cell structure for comparison with the ex-
perimental data for the elliptic jet.

Table 1. Initial amplitudes for the various modes of
elliptic jet, M;=1.64, Mg=1.52.

Mode No. (Pne )o/Pa Mode No. (Pnr)o/Pa
01 0.31506 21 0.04636
02 —0.12058 22 ~0.03442
03 0.07365 23 0.02305
04 —-0.05301 24 -0.01739
11 —~0.09432 31 —~0.02636
12 0.05190 32 0.02611
13 —0.03351 33 —0.01779
14 0.02475 l 34 0.01365

Table 2. Initial amplitudes for the various modes of
elliptic jet, M;=1.36, Mgs=1.52.

Mode No. (Pnr)o/Pa Mode No. (Pnr)o/Pe
01 —0.33231 21 —0.05083
02 0.12597 22 0.03589
03 —0.07692 23 —-0.02413
04 0.05534 24 0.01821
11 0.10153 31 0.02967
12 —0.05429 32 ~0.02703
13 0.03506 33 0.01859
14 —0.02588 34 —0.01428

In order to obtain a reasonable description of the
perturbation pressure, the number of modes to be con-




sidered in eqn. (3.12) has to be determined. This can be
achieved by calculating the amplitudes of the Fourier-
Mathieu series coefficients representing the perturbation
pressure at the nostle exit, see eqns. (3.22) and (3.23).
Henceforth, any given mode is designated by the indices
nr. For example, mode 01 corresponds to n = 0 and
+ = 1. The initial amplitude of any given mode is a
function of both n and r as well as the jet operating
condition. This dependence can be seen in Tables 1 and
9. The amplitudes presented here are the perturbation
pressure {pnr)o on the jet centerline normalized by the
ambient pressure p,. It can be seen that for a given n,
the amplitude decreases as r increases. The amplitudes
also decrease as n increases for any given r. It is also
clear that many modes would have to be considered to
provide a perfectly uniform exit perturbation pressure.
The variation of the perturbation pressure at the no-
zle exil along the major- and minor-axes is shown in
Fig. 3 for the underexpanded elliptic jet, where L, and
Lp are the dimensions of the fully-expanded major-and
minor axes, respectively. Here, contribution from the
modes n = 0, 1, 2 and 3 are considered where for each
n, four roots {i.e. r = 1, 2, 3 and 4) are considered.
This figure reveals that in spite of considering so many
modes, there is still some nonuniformity in the pres-
sure variation across the cross-section of the jet. This is
characteristic of the difficulty of approximating a step
function with Bessel functions, in the circular jet case,
and modified Mathieu functions, in the elliptic jet case.
However, as the amplitude of the higher modes is reason-
ably small, it is assumed that a practical approximation
can be obtained by considering fewer modes. Hence, in
all subsequent calculations for the elliptic jet, the modes
considered are 01, 02, 03, 04, 11 and 12. The difference
between the sum of the contribution of these modes and
the pressure difference at the exit, obtained using isen-
tropic relations, is less than 10% for both the underex-
panded jet and the overexpanded jet. Calculations at
other operating conditions for both circular and elliptic
jets have shown that the number of modes required to
obtain a given degree of accuracy is a strong function of
the jet operating conditions.

Figure 4 shows the axial pressure distribution ob-
tained for the underexpanded jet along the centerline of
the elliptic jet. Figure 5 is for the case of the overex-
panded elliptic jet. The sum of the contributions from
the six chosen modes is compared with experimental
data of ref. 21. Here, the normalized pressure pertur-
bation is given as a function of downstream distance, z,
referenced to the equivalent radius of the fully expanded
jet, ry. As can be seen, in both the cases, there is favor-
able overall agreement between the measured and calcu-
lated pressure distributions. The shock cell spacings and
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Fig. 4 Centerline Axial Pressure Distribution for El-
liptic Jet, M;=1.64, Ma=1.52. , present calcula-
tions; — — —, measured data of ref. 21.

the pressure amplitudes are in fairly good agreement. It
should be noted that the numerical results presented in
Figs. 4 and 5 have been calculated by shifting the results
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by about half an equivalent diameter in the axial direc-
tion. This is done to account for the unknown location
of virtual origin of the shear layer. Clearly, the present
model being relatively simple, cannot efectively model
the initial development of the jet as the Bow transitions
from the nozzle dimensions to the fully expanded jet. It
should be noted that the potential core is much shorter
for the elliptic jet compared to a circular jet at the same
operating conditions. For example, from Fig. 2, it can
be seen that ho s O for z/r; = 12. Also, the calcula-
tions in Fig. 4 stop at z/r; = 4.5. Beyond that point
convergence could not be obtained for the eigenvalues of
the higher order modes.

In Figs. 6 and 7, the fundamental mode (mode 01)
for the two cases are compared with the measurements.
No axial shift has been applied to the predictions in
Fig. 7. These figures show that the shock cell spacing
can be approximated to a reasonable extent by the fun-
damental mode alone. However, the amplitudes of the
shock cells cannot be predicted by this mode alone. In
order to get a better description, a greater number of
modes as in Figs. 4 and 5 need to be considered.

As mentioned earlier, non-circular jets have been
considered with a view to achieving better aeroacoustic
characteristics. Thus, comparisons of the axial pressure
distribution of circular and elliptic jets operating under
identical conditions bave been made. Figures 8 and 9
show this comparison for both the underexpanded and
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c.C

Fig. 6 Centerline Axial Pressure Distribution for El-
liptic Jet, M;=1.64, Mq=1.52. , mode 01; - - -,
measured data of ref. 21

Centerline Axial Pressure Distribution for El-

Fig. 7
liptic Jet, M;=1.36, Myg=1.52.
measured data of ref. 21

, mode 01; - - -,

the overexpanded jets. In the case of circular jet, the
axial pressure distributions are made up of a linear com-
bination of the first six modes of the shock cell model.



These modes are given by the various reroes of the Bessel
function, Jg, and their amplitudes at the jet exit is given
by egn. {2.1) in Tam, Jackson and Seiner!®. These fig-
ures show that the shock cell amplitudes as well as the
shock cell spacings are less for the elliptic jet case. This
suggests that the amplitude of broadband shock asso-
ciated noise might be reduced in the elliptic jet case.
However, since the decrease is relatively small in abso-
Jute terms it is likely to have a negligible eflect on the
radiated noise calculated in decibels.

c.5
)4"/)1' 0.0
-0.5 |~ o
N ""
-1.0 1 | 1 | 3 —J
0 2 4 6
zfr,
Fig. 8 Varjation of Axial Pressure Distribution with
Aspect Ratio, r/d=0.0, M;=1.64, Mg=1.52. , 2:1
Elliptic Jet; - — =, Circular Jet.
5. Summary

In this paper a linear model has been used to predict
the shock cell structure in non-circular jets. A confor-
mal mapping technique with a pseudo-spectral hybrid
scheme has been used to calculate the wavelength and
decay rate of the shock cell modes. Predictions have
been obtained for a circular jet and an elliptic jet of as-
pect ratio 2. The numerical scheme used here has been
shown to be more successful than the earlier scheme of
Morris and Bhat!® in obtaining converged solutions for
the elliptic jet. The axial variation of the various modes
contributing to the shock cells for the elliptic et has
been observed to behave in a fashion similar to those
of a circular jet. The amplitudes and the shock cell
spacings for the elliptic jet have been found to be less
than those for a circular jet for identical operating con-
ditions. These changes are likely to result in negligible
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1fr,
Fig. 9 Variation of Axial Pressure Distribution with
Aspect Ratio, r/d=0.0, M;=1.36, M4=1.52. , 201
Elliptic Jet; - - -, Circular Jet.

direct benefits in noise reduction. However, additional
benefits of the elliptic geometry could result due to a
modification of the jet’s turbulent structure or a reduc-
tion in the supersonic region of the jet. These mecha-
nisms are being explored by the authors.
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Instability of Elliptic Jets
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Abstract

This paper presents a detailed account of the hydrodynamic stability character-
istics of the initial region of an elliptic jet. A realistic mean velocity profile is used.
Calculations of growth rates, phase velocities and eigenfunctions are presented. The
growth rates of all modes in the initial mixing region are found to depend on the
minimum momentum thickness. Pressure fluctuations are found to be greatest for
all modes close to the major axis. An irregular normal mode is found at larger
eccentricities. All modes, odd or even about the major axis and with periods of =

or 27 have similar growth rates in the initial mixing region.
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Introduction

This paper presents a detailed account of the hydrodynamic stability character-
istics of an elliptic jet in the initial mixing region. The results of the analysis serve
two purposes. First, they provide a reference case for the verification of analyses
that consider jets of arbitrary shape. Second, they provide some insight into the
initial development of large-scale coherent structures in a turbulent, elliptic jet. In
a previous paper, ref. 1, the author presented some preliminary calculations. The

present paper extends those calculations and corrects some misinterpretations.

Purely round jet geometries are the exception rather than the rule in practical
applications. Jet engine exhausts are fitted with mixing devices to reduce noise
and decrease the Jength of the exhaust plume. Non-circular exhausts also occur
in V/STOL applications in enhanced lift and thrust-vectoring devices. The en-
hanced mixing properties of non-circular jets make them attractive components for
fuel-injection and high-speed combustion. A number of recent experimental investi-
gations have been conducted to examine the properties of non-circular jets?~%. At
Jow Reynolds number an elliptic jet develops in an unusual fashion as the major
and minor axes of the jet switch several times with downstream distance. This may
be associated with the mutual interaction of adjacent elliptic toroidal vortices. At
high Reynolds number the number and location of any axis-switching remains un-
clear. However, in this case, experience has shown that the gross properties of the
Jarge-scale structures in the turbulent mixing laver may be modeled as instability
waves. This approach has led to a better understanding of jet mixing noise radia-
tion in high speed jets °, and the effect of acoustic excitation on the development
of turbulent jets'®. Detailed comparisons between the predictions of instability-

wave models and turbulence in mixing layvers'! and wakes!? have also been made.



Thus 2 knowledge of the stability characteristics of an elliptic jet should provide a

description of the gross features of the large-scale structures in such a flow.

Crighton'? examined the stability of an elliptic jet with a “top-hat” velocity
profile. He obtained some solutions for large eccentricity, in which limit the jet had
stability characteristics similar to those of a two-dimensional jet. Calculations for
a wide range of eccentricities for this vortex sheet representation were obtained by
Morris and Miller!. Their numerical results supported Crighton’s asymptotic solu-
tions. However, the vortex sheet approximation is only valid in the Jow-wavenumber
Limit. It indicates instability at all frequencies. The observed limited bandwidth of
unstable frequencies is determined by the finite width of the mixing region. Only
by using realistic mean velocity profiles can a most-unstable or neutrgl frequency
be obtained. Thus in the present paper the stability of an elliptic jet represented

by a continuous axial velocity profile will be considered.

A numerical method for the calculation of the stability characteristics of jets
of arbitrary shape has been developed by Koshigoe and Tubis!4. Their calculations
for an elliptic jet compared favorably with the earlier calculations of ref. 1. The
integral approach that they use suffers from limitations in accuracy as will be shown
below. However, the technique does not depend on the separability of the stability

equations and is thus a very attractive approach.

In this paper the stability characteristics of elliptic )ets are documented for
several eccentricities. The numerical solution requires the evaluation of modified
Mathieu functions for arbitrary complex argument. Both eigenvalues and eigenfunc-
tions are presented. In the next section the stability equation in elliptic cvlindrical

coordinates and the asymptotic forms of solution that satisfy the boundary condi-



tions are developed. The numerical evaluation of these asymptotic solutions is then
described. The stability characteristics of an elliptic jet in the initial region are then
given. Finally, the relationship between these calculations and the development of

a realistic elliptic jet is discussed.

Analysis

A jet flow is considered issuing from an elliptic nozzle. The problem will be
developed in elliptic  cylindrical coordinates (p,6,z). These are related to the

Cartesian system by:

z =a coshp cosf
y = a sinhp sinf (1)

The jet axis is aligned with the z direction and the axial mean velocity of the
jet W (p,8) is assumed to be a function of p and 8 only. This is the parallel flow
approximation of hydrodynamic stability. This assumption leads to the leading
order problem in a multiple-scales analysis to include the effects of flow divergence.

These effects are not considered in the present analysis.

A Poisson equation for the pressure is obtained by taking the divergence of the
momentum equation and using the equation of continuity. The resulting equation is
linearized about the mean flow. The velocity fluctuations are eliminated in favor of
the pressure fluctuation using the linearized momentum equations. If the pressure

fRuctuation is written in the form,

p(p.6,2,1) = p(p.8) expli(az — wt]], (2)
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then the equation for p may be written,

[cosh(2p) — cos(26)]p = O, (3)

3% 9% 2a{8W8ﬁ "‘l@} a*a?

5;7+Eﬁ+ n 7976_;»4r EYREL,

where 1 = w — aW.

If W is taken to be a function of the “radial” coordinate p only then a separable
form of solution may be sought. This separation is valuable in that highly accurate
stability calculations may be performed without excessive computation. However,
as will be seen below, this results in a link between the momentum thickness distri-
bution of the mean flow and the eccentricity of the jet which may not be physically

realistic.

If a solution for p is sought in the form p = R(p)T(6) then T and R are found

to satisfy,

d*T
—_— + |- 20T =0 4
TR + |X — 2qcos(26))T =0, (4)
d’R 2cdW dR
d — = |22 h{2p)|R = 0, S
an a7 + a dp dp [ g cosh( P)] ()
where ¢ = —a?a?/4 and X is a separation constant. In general g is complex.

Equation (4) is Mathieu’s equation. Equation (5) is the Rayleigh equation in elliptic
cylindrical coordinates and reduces to the modified Mathieu equation in regions

where W is constant.

The solutions of eqn. (4) are of four types that are odd or even in § and with
period 7 or 27. Details of the evaluation of the Mathieu and modified Mathieu
functions and their characteristic numbers are given in refs. 13 and 16. The no-
tation given by Abramovitz and Stegun’® is used in the present analysis. The

characteristic numbers were obtained numerically as the eigenvalues of the matrix
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for the coefficients of the sine or cosine series of the Mathieu functions (see ref. 16,
eqns. 20.2.2-20.2.11). The series was truncated after 11 terms. This gave 8 dec-
imal places of accuracy for all the values that could be compared with tabulated
values!®. The modified Mathieu functions were obtained from a series of products

of Bessel functions (see ref. 16, eqns. 20.6.7-20.6.10).

Only certain combinations of these functions permit the physical boundary

conditions to be satisfied. These were determined by Crighton!3.

In the ambient
fiuid surrounding the jet the pressure fluctuation must vanish as p — oo. This leads

to the following forms of solution.

: A cearan(6) Mesy (p) ©)
p(p.6) — (3)
A segrap(6) Msy, o (0)-

Mc® and Ms® are Mathieu-Hankel functions. If p = 0 the solutions are of period

7, if p = 1 the solutions are of period 27.

The interfocal line p = 0 extends from (z,y) = (—¢,0) to (a,0). If the pressure
and velocity components are to be continuous across the interfocal line then the

solution for p(p,8) for small p must take the form,

R _ [ B cearyplh) Cezr4p(p)
ple.0) = {B sear+p(0) Se2r+p(Pp)- @)

This gives the asymptotic form of the solution within the potential core of the jet.

Crighton’? considered the case of a vortex—sheet representation of the jet flow.
That is,

. Wo Jor p < po.
%% = : 8
() {0 for p > po. (8)

Continuity of pressure and particle displacement at the vortex sheet requires that,

. ap
pl = . | = 9
alpl=0 A [ap} 0, (9)
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where A| | denotes the change across the discontinuity. Application of these condi-
tions for the forms of solution given by egns. (6) and (7) leads to a set of dispersion

relationships. For the even modes these take the form,

Celrs plPo)Mesrsp(p0) _ [1 _ u} (10)
Cezrsp(po)Mcy, s (p0) v 1
where primes denote differentiation with respect to p. A similar result may be ob-
tained for the odd solutions. Crighton !® obtained asymptotic solutions for these re-
lationships for large eccentricities. Morris and Miller! solved eqn. (10) numerically
for a wide range of eccentricities. They showed that as the eccentricity increased the
growth rates of the even modes decreased but those of the odd modes, in particular
2r 4+ p =1, increased. This could be interpreted to mean that as the jet's eccentric-
ity increases the preferred mode would switch from being in phase around the jet, -
such as the axisymmetric mode in the round jet, to being out of phase about the
major axis, such as the antisymmetric mode in the two—dimensional jet. However,
these conclusions should only be valid at very low frequencies in a real jet. These
deficiencies are addressed below where a mean velocity profile with finite thickness

is considered.
Calculations
The mean velocity profile

The mean velocity profile considered is analogous to that chosen by Michalke!”
to describe the initial mixing region of a circular jet. For the elliptic jet the profile

is taken to be

W (o) = 1 0<p<p 11
() = %|1+Lanh{B(l—sinhp/sinhpo)/ws}} for p>p° (11)
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A and B are the lengths of the semi-major and semi-minor axes of the ellipse
defined by p = po and fp is the momentum thickness along the minor axis given
by,

03=/ W(@i1-W)dy : z=0. (12)
0

In egn. (12) p, is chosen such that tanh {B(1 — sinh p;/sinh po)/20p} is close to
unity and pg is the half-velocity point. Since the minimum valu.- of p is zero
this condition can be met if 85 /B is sufficiently small. The velocity profile given by
eqn. (11) reduces to Michalke's!” profile in the case of a circular jet. The profile was
chosen by Michalke on the basis of comparison with experimental data rather than
being a solution of the equations of motion. As such it is a local representation,
consistent with the parallel flow approximation of the stability analysis. Axial
variations are included parametrically through the dependence of 6 and B on z.
The validity of this choice of profile may be seen by comparing with the experimental
data of Ho and Gutmark®. Figure 1 shows a comparison made at two axial locations
z/Ao = 0.5 and 2.0, where Ag is the semi-major axis length at the jet exit. The
local values of A/B based on the locations of the half velocity points are 1.88 and
1.49 respectively. The corresponding values of 85/B were found to be 0.044 and
0.223. The agreelinent. between the analytical profile and the experimental data is
reasonably good except in the inner part of the mixing region along the minor axis

for the downstream location.
The momentum thickness along the major axis is defined by
oo
64 = / W(1-W)dr : y=0. (13)
0
It can be shown that,

A6, = Bfg|l + terms of order (65/B)?). (14)
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Thus as the eccentricity of the jet increases the momentum thickness on the minor
axis becomes greater than that on the major axis. This is a consequence of requiring
that W be a function of p only so that a separable solution can be obtained. In
practice this linkage between eccentricity and momentum thickness ratio will not
exist. In that sense the profile is somewhat unrealistic. However the benefits of
obtaining highly accurate solutions to the separable problem are felt to justify the

present approach.
Numerical method

The Rayleigh equation (5) was solved numerically using a variable step-size
Runge-Kutta algorithm (IMSL routine DVERK modified for complex arithmetic).
For a given value of frequency and initial guess for the wavenumber two integrations
were performed starting from p; and pz, at whichW = 0.001 and 0.999 respectively,
toward the center of the mixing region. The starting conditions were based on the
asymptotic solutions (6) and (7). The resulting numerical solulions at p = po are
denoted by R;(po) and R2(po). The two solutions and their derivatives much match

at p = po, that is,
CiRi(po) — C2Ra(po) =0
| (15)
C1R}(po) = C2R3(po) = O

If eqn. (15) is to have a non-trivial solution for Cy and Ca,

V(w,a) = Ri(po)Ra(po) - R} (po)R2(po) = 0. (16)

Newton’s method was used to find the zeroes of V(w,a) and hence the eigenvalues

Q.

Calculations were performed for both odd and even modes about the major axis

with periods 7 and 27. The variables were non—-dimensionalized with respect to the



jet exit velocity, the radius of & circular jet of equal exit area /AB and the uniform
density. Unless stated otherwise all calculations were for a momentum thickness on
the major axis of 84 = 0.02. However, it should be remembered that the momentum
thickness on the minor axis varies according to egn. (14). Calculations have been
performed for three eccentricities: A/B =1.001, A/B = 2.0 and A/B = 4.0. The
first case permits comparison of the results with the circular jet case. The areas
within the contours of p = po, which are the contours of the half-velocity points,

were held constant.
The ceg mode

The ceo mode corresponds to the axisymmetric m = 0 mode in the circular jet
cas.e. Figure 2 shows the axial growth rates a; for the ceo mode as thé eccentricity
changes. The results for A/B = 1.001 are very close to the circular jet results’8.
The maximum growth rate decreases as A/B increases. However the frequency for
the maximum growth remains nearly independent of eccentricity. Table I gives this
frequency and the corresponding wavenumber for several modes and values of A/B.
If the frequencies for maximum growth are non-dimensionalized with respect to the
major axis momentum thickness 8 4 the values for wmaz04 are 0.109,0.113 and 0.113
for A/B = 1.001, 2.0 and 4.0 respectively. This suggests that the initial shedding
frequency is controlled by the minimum momentum thickness, along the major axis
in the present case, and is nearly independent of eccentricity. This is confirmed by
the measurements of Husain and Hussain? and Gutmark and Ho®4. In the former
experiments the momentum thickness was nearly independent of azimuthal position

whereas in the latter experiments g = 0.86 4.

Figure 3 shows the variation of the phase velocity with A/ B for the ceq mode.
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For A/B = 1.001 the mode exhibits phase velocities greater than the exit velocity
that were discussed by Bechert and Pfizenmaier!?. In general, increasing the eccen-
tricity makes the phase velocities less dependent on {requency. Table ] shows that

the phase velocity for wmaz Increases with increasing A/B.

In the round jet, the amplitude of the azimuthal modes are independent of the
azimuthal location. However the behavior of modes for the elliptic jet is different.
Firstly, as discussed further below, the modes are not “spinning” but have a fixed
phase reference to the major or Minor axes. Secondly the azimuthal variation is
determined by the behavior of the Mathieu function that is the solution of eqn. (4).
As A/B approaches unity ¢ approaches zero, since a goes 10 Zero. Then the solutions
to eqn. (4) are either sines or cosines. However for larger values of A/B, g is a
complex number with phase determined by the complex wavenumber . In this
case the amplitude of the ceg mode is no longer independent of azimuthal location.
Figure 4 shows the azimuthal variation of |T'(8)] for the various eccentricities for
the maximum amplifying frequency in each case. For A/B = 1.001 the amplitude
is nearly independent of 8. This is the axisymmetric mode behavior for the round
jet. For A/B = 2.0 and 4.0 the amplitude decays rapidly away from the major axis
and is essentially zero on the minor axis. This would indicate that close to the jetl
exit the pressure and velocity fluctuations associated with the ceq mode would be
greatest near to the major axis. However, because of the form of velocity profile
chosen this is also the Jocation of the minimum momentum thickness. For uniform
momentum thickness around the jet exit it is not clear that this behavior would be
seen. The variation of R(p) with eccentricity is shown in Fig. 5. The distribution
is plotted along the major axis relative to the half-velocity point and stretched by

the major axis momentum thickness 6 4. The distributions, plotted in this way, are
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nearly independent of eccentricity. Thus those motions observed in the round jet

will be duplicated in the elliptic jet except that the amplitude may vary azimuthally.
The ce;, modes

In addition to the cep mode there are other even modes of period 7 that are
unstable in the initial mixing region. Figure 6 shows the axial growth rates for
these ces, modes for r = 0, 1 and 2 for A/B = 1.001. From this figure and
the numerica) values given in Table 1 it is clear that the higher-order modes have
similar but smaller growth rates than the ceq mode. The azimuthal variation of
these modes for A/B = 1.001 is given approximately by cos(2rf). The ce; mode
corresponds to the n = 2 double helix in the round jet calculations of Mattingly
and Chang?®. However it should be emphasized that all the -modes in the elliptic
jet case are phase-locked with respect to the major and minor axes and are not
spinning modes. This means that any jet that deviates slightly from axisymmetry

in the mean is likely to exhibit “flapping” rather than spinning modes.

Koshigoe and Tubis'4 have also calculated the stability of these higher—order
modes. However the accuracy of their technique, designed for non-separable prob-
lems, is limited by their two-dimensional grid. In the present calculation the solu-
tions are analytic in the azimuthal direction and use a variable step-size to achieve
a prescribed accuracy in the “radial” direction. However, in spite of the relatively
crude nature of their grid, the results in ref. 14 show all the qualitative character-

istics of the present results.
The se;, mode

The modes that reduce to the helical, n = 1 mode in the round jet case are

the se, and ce; modes. They have azimuthal variations that reduce to sin f and
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cos§ respectively. The variation of the axial growth rates for the se, mode for
various eccentricities is shown in Fig. 7. For A/B = 4.0 the maximum growth rate
for the se; mode is slightly less than that of the cep mode. The most-amplifying
frequencies for the se) mode are also slightly lower than the ceo modes. The value
of wmaz falls from 0.1091 to 0.0704 (when scaled by the momentum thickness 64) as
A/ B changes from 1.001 to 4.0. The phése velocities, shown in Fig. 8 are always less
than the jet exit velocity. For A/B = 1.001 the results agree closely with the values
for the n = 1, helical mode in the round jet. At the most amplifying frequency the
phase velocities are approximately one half the jet velocity (see Table I). As the

eccentricity increases the phase velocities become less dependent on frequency.

For ¢ = 0, the round jet limit, the se; Mathieu function has its maximuim
value at § = +7n/2. However for other values of g this changes. Figure 9 shows
the azimuthal variation of |T'(8)| for various eccentricities. As was found in the ceo
mode case the amplitude falls 1o zero at the minor axis as the eccentricity increases.
Thus the pressure and velocity fluctuations associated with this mode will also be

greater close to the major axis (for the present choice of mean velocity profile).
The se,,4+; modes

The higher-order odd modes with period 27, the sezr4) modes, exhibit an
interesting behavior. For real or small ¢ the characteristic numbers of Mathieu’s
equation are readily classified. However, for complex g pairs of these characteris-
tic numbers are equal. The location of these branch points has been examined by
Hunter and Guerrieri?!. The asymptotic formulae used to calculate the characteris-
tic numbers changes as one crosses a branch cut that extends radially outward from

the branch point in the complex plane (see Fig. 4, ref. 21). Across these branch cuts
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the characteristic numbers exchange their order. This leads to an unusual behav-
jor for the sep,4 modes for higher eccentricities. The characteristic numbers and
the associated normal modes may be classified initially according to the eigenvalue
sequence provided by the IMSL routine. Figure 10 shows the complex value of

= w/a for the first four characteristic numbers in the sequence. The eigenvalues
fall into several groups. There are three continuous sequences associated with the
second and first, third and second, and fourth and third characteristic numbers.
There is clearly another sequence with a different behavior in the c-plane that has
contributions from all the characteristic numbers. This sequence could be thought
of as indicating an “irregular” mode, though it does not have the same features as
the irregular mode described by Michalke??. In the present case the higher—order
odd modes have been classified by number if they fall into the smooth sequences
shown in Fig. 10 or as irregular if they do not. This leads to the axial growth rates
and phase velocities shown in Figs. 11 and 12 respectively for A/B = 2.0. The max-
imum growth rate is still associated with the se, mode. All the modes have similar
phase velocities in the range 0.5 to 0.8 and the dependence on frequency decreases
as the mode number increases. Though it appears likely that the appearance of the
irregular mode is associated with the branch points of the characteristic numbers
of Mathieu’s equation, the mode-switching does not always occur near the branch
cuts identified by Hunter and Guerrieri?!. So the appearance of the irregular mode

remains unexplained.
The ce;,.; modes

The ces,.; modes are even about the major axis and have a period 27. They
may be identified with a flapping motion about the minor axis in the elliptic jet.

The ce; mode corresponds to the n = 1, helical mode in the round jet. From Table
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1 it can be seen that the ce, and se; modes have almost identical characteristics,
approaching the n = 1, helical mode values, as the round jet limit is approached.
The ce, and se; modes behave very similarly as the eccentricity changes with the
exception that the frequency of the most-amplifying mode 1s nearly independent
of the eccentricity for the ce; mode. In view of the similarity between the two
modes the growth rates and phase velocities are not shown but the most-amplifying

frequencies and wavenumbers are given in Table 1.

Discussion

The present results, subject to the particular mean velocity profile, indicate that
no particular mode is dominant in the initial mixing region and that the stability
characteristics are controlled by the minimum initial momenturﬁ thickness, which in
the present case always lies on the major axis. In a given experiment the selection of
a particular mode will depend on external influences, such as intended or unintended

forcing or a feed-back based on the preferred mode of the entire jet flow field.

Michalke2?® and others have shown how the process of vortex pairing may be
simulated qualitatively using linear stability theory. Such calculations can describe
the initial mixing region of a low Reynolds number jet or an artificially excited
jet at higher Reynolds number. Consider the ceq mode which corresponds to the
axisymmetric mode in the round jet case. In the preceding section it was shown
that the “radial” eigenfunctions for this mode were independent of eccentricity, see
Fig. 5. Thus the same processes observed in the round jet should occur in the
elliptic jet. However, in the elliptic jet the amplitude of these motions was seen

to be dependent on the azimuthal Jocation. For the ceq mode the amplitude is a
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maximum on the major axis and falls rapidly to zero on the minor axis. Thus it
could be speculated that a vortex roll-up would occur on the major axis but no such
motions would be seen on the minor axis. Such vortex motions, which resulted in a
switching of the jet’s major and minor axes, were observed by Husain and Hussain?
and Gutmark and Ho®. However, these processes occur in regions where the jet is

developing rapidly and the thickness of the mixing layer is increasing.

The primary purpose of this paper has been to establish the stability character-
istics of a non—circular jet. The choice of mean velocity profile enabled the stability
equation Lo be separated so that highly accurate solutions could be obtained to the
resulting ordinary differential boundary value problem. The particular choice of
velocity profile resulted in an initial momentum thickness that varied around the
jet, being a minimum on the fnajor axis and ::x maximum on the minor axis. This
situation could be different in a given experiment as it was in the measurements
of Husain and Hussain? and Gutmark and Ho®. However the results given in the
preceding sections should serve as a test of the accuracy of numerical methods that

describe the stability of jet flows of arbitrary shape.
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Mode AlB wmax Qreal Cimag

ceo 1.001 5.4413 10.1992 -5.68521
ceo 2.0 5.6578 10.1355 -4.50741
ceo | 4.0 5.6518 9.0558 -2.54701
cey 1.001 5.4949 10.3593 -5.54831
ceg 2.0 4.4171 8.3818 -3.15671
ceyq 1.001 5.6203 10.7420 -5.17631
se) 1.001 5.4537 10.2381 -5.64911
se) 2.0 5.0106 9.3223 -3.67781
se; 4.0 3.5184 6.7366 -2.21321
sea 20 3.9380 7.5734 -2.78561
cey 1.001 5.4567 10.2432 -5.65171
ce; 2.0 5.6577 10.0272 -4.50741
ce 4.0 5.6517 9.0556 -2.54701

Table 1. Frequencies and wavenumbers for maximum rate of growth.
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Captions

Fig. 1 Comparison of eqn. (11) with experimental data®: z/Ac = 0.5, O , major axis,

¢ , minor axis; z/Ao = 2.0, O , major axis, A , minor axis. Equation (11),

,A/B =188, §5g/B =0044; -----, A/B =149, 6g/B = 0.223.

Fig. 2 Variation of axial growth rate with frequency for the cep mode.

,A/B =100, ——=-—- ,A/B=120,—-—=,A/B=40.04=0.02
Fig. 3 Variation of phase velocity with frequency for the ceq mode. For legend see Fig. 2.

Fig. 4 Azimuthal variation of the amplitudes of the most unstable ceq eigenmodes. For

legend see Fig. 2.

Fig. 5 Distributions of most unstable ceg eigenmodes along the major axis. For legend

see Fig. 2.

Fig. 6 Variation of axial growth rate with frequency for the ces, modes. —, 7 = 0;

————— r=1—-—=—,r=2 A/B=1001, 64 =002

Fig. 7 Variation of axial growth rate with frequency for the se; mode. For legend see

Fig. 2.
Fig. 8 Variation of phase velocity with frequency for the se; mode. For legend see Fig. 2.

Fig. 9 Azimuthal variation of the amplitudes of the most unstable se; -eigenmodes. For

legend see Fig. 2.

Fig. 10 Eigenvalues in the c-plane for different characteristic numbers of Mathieu's equa-

tion. Eigenvalue sequence number, O .1; O . A .3 O 1

Fig. 11 Variation of axial growth ratc with freameney foo the <o 0y modes. ————

r=0i——--- r=1; —-—-,r = 2;0—0D, irregular mode. A/B =2.0. 84 = 0.02.
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Fig. 12 Variation of phase velocity with frequency for the sezr 4 modes. For legend see

Fig. 11.
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Abstract

The shock cell structure of single supersonic non-ideally expanded jets with
arbitrary exit geometry are studied. Both vortex sheets and realistic mean profiles
are considered for the jet shear layer. The boundary element method is used to
predict the shock spacing and screech tones in a vorlex sheet mode! of a single
jet. This formulation enables the calculations to be performed only on the vortex
sheet. This permits the efficient and convenient study of complicated jet geome-
tries. Results are given for circular, elliptic and rectangular jets and the results are
compared with analysis and experiment. The agreement between the predictions
and measurements is very good but depends on the assumptions made to predict
the geometry of the fully-expanded jet. A finite difference technique is used to ex-
amine the effect of finite mixing layer thickness for a single jet. The finite thickness
of the mixing layer is found to decrease the shock spacing by approximately twenty

percent over the length of the jet potential core.



1. Introduction

There have recently been considerable advances in our understanding of su-
personic jet noise. The results of this work are well summarized by Tam [1]. In
this paper he shows how the various mechanisms for noise generation in supersonic
jets may be related to the turbulence in the jet shear layer and its in eraction with
the nearly-periodic shock structure of the jet. The contribution to the noise ra-
diation from the turbulence alone, usually referred to as jel mixing noise, may be
modelled as the radiation of sound by instability waves following the work of Tam
and Morris [2], and Tam and Burton {3, 4]. The interaction of the instability waves
with the periodic shock-structure can result in screech tones as shown by Tam |5].
The broadband shock noise is associated with the interaction between the random
turbulence in the jet shear layer and the shock structure. The important features of
the random turbulence may be modelled as a random superposition of the normal
modes of the jet shear layer, Tam and Chen [6]. These normal modes are simply
the solution of the Orr-Sommerfeld equation with mean flow properties given by
the jet velocity and temperature fields. The success of this model and prediction
scheme is remarkable in its ability to predict both the near and far pressure fields

of the jet.

With the exception of refcrence 5, Tam’s work has dealt with jets with a simple
geometry. However recent interest has focussed on the behavior of non-circular jets
[7-11]. Such jets have enhanced mixing properties. This is important in turbu-
lent combustion, particularly at high speeds, and for jet exhaust plumes. Nearly
rectangular nozzles have important uses in STOL applications for lift control and

vectored thrust.



In this paper we consider supersonic jets issuing {rom jet nozzles with arbitrary
cross-sections. As noted above. Tam and co-workers have shown that both the
Jarge-scale coherent structures and the shock structure of jets may be modelled
using a wave analysis. The essential difference between {the two cases is that the
former are travelling waves while the latter may be modelled as stationary waves.
This means that we are concerned with solving the equations of hydrodynamic
stability in which the coefficients depending on the mean flow are arbitrary functions
in a plane normal to the jet axis. Calculations of the stability of non-circular jets
have also been performed by Koshigoe and Tubis [12. 13| and Morris [14]. In the
former a Green’s function approach was used and in the latter the mean velocity
profile for the elliptic jet was chosen such that separable solutions could still be

obtained in elliptic cylindrical coordinates.

We will assume that the mean flow properties are slowly-varying functions of
the axial distance. Tam, Jackson and Seiner [15]. showed that the effect of the slow
axial variation could be accounted for using the method of multiple scales, but that
the differences in the predicted shock-structure with and without this effect were

small. Thus we will assume that the mean flow is locally parallel.

In this paper the shock cell structure and screech tones of a single supersonic
jet with arbitrary exit geometry are addressed. The jet mixing layer is modelled
by both a vortex sheet and realistic continuous velocity and density profiles. In
the former case the area of the vortex sheet cross-section is taken to be that of the
fully—expanded jet-. This is a jet in which the mass flux is equal to that at the jet exit
but the pressure has been equalized with the ambient. This is an approximation,
even for the small pressure differences considered in the present case. However, a

sample calculation for the two-dimensional jet using linear pressure/turning angle

2
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relationships showed that the vortex sheet had an average location given by the
vortex sheet location for the fully- expanded jet. Though the analysis developed
in the next sections could be applied to segmented exit geometries, such as the
multitube configuration, the rapid development of the flow in such cases would

diminuish the validity of the model.

It has been found that the boundary element, method is a valuable tool for the
study of jets of arbitrary geometry represented by a vortex sheet. Other numerical
methods have been employed to consider the cases where the jet mixing layer has
finite thickness. In the next section the the analytical development is given for both
representations of the jet. This is followed by the calculations and comparison with

experiment.



2. Analysis

A typical cross-section of a single jet is shown in Fig. 1. The flow may be
divided into three regions. In regions I and III the mean flow properties are constant.
These regions correspond to the potential core of the jet and the ambient fluid
surrounding the jet respectively. Region Il represents the annuiar mixing region in

which the mean velocity and density of the jel vary.

As a first approximation a linear shock cell model can be developed in which the
mixing region of the jet is represented by a vortex sheet. Such a model was used by
Tam and Tanna |16] in the circular jet case and Tam |5] for arbitrary geometry jets.
The next approximation accounts for the finite thickness of the mixing layer and
the variation in the mean flow properties. To solve these two problems two methods
have been developed. The vortex—sheet problem is analyzed using the boundary-
element method. The finite thickness case is solved using a finite—difference solution.

The analysis for these two techniques is given in this section.
2.1 Vortex-Sheet Shock Cell Model.

The formulation of the problem is the same as that given by Tam |5], and will be
outlined briefly. However Tam used an eigenfunction expansion method to analyze
the arbitrary geometry problem. Such an approach is well-suited to problems in
which the vortex—-sheet conforms to a coordinate line in an orthogonal coordinate
system such as the circular, rectangular or elliptic jet. Tam gave solutions to the first
two cases and fér the elliptic jet in the limiting cases of nearly circular and highly
eccentric geometries. However such a method is not suitable for more complicated
geometries. Thus in the present analysis the solution is based on the boundary

element method. However the eigenfunction expansion method is used in the present
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paper to find the solutions in the elliptic jet case for any eccentricity. These results

are used to verify the boundary element calculations.

Consider a shock cell system in a jet column bounded by a vortex sheet as
shown in Fig. 2. For convenience, a Cartesian coordinate system centered at the
nozzle exit with the r-axis in the direction of the jet centerline will be used. The
surface of the vortex sheet bounding the fully-expanded jet is given by So(y, z) = 0.
There is no disturbance outside the jet. The lincarized equations of motion inside

the vortex sheet arec:

0
/)JV-V-FU]'EZ = (). (21)
ov
. - _Y 2.2
f)] Jax n, ( )
p:a?p. (2.3)

p;j, u; and a; are the density, velocity and the speed of sound of the fully expanded
jet. p, p and v are the densily, pressure and velocity associated with the linear

shock cell structure.

From eqgns. (2.1) to (2.3) it is found that the pressure p satisfies the equation

a%p
\727'_M"25}—2 =0, (2.4)

with p = 0 on the boundary Sa(y,z) =0 and, al 7 =0, p = Ap inside Sa(y,2) =0

and v; = 0. v, are the velocity fluctuations normal to the jet axis.

A general solution of the vortex—sheet shock cell houndary value problem can

be found by writing the pressure fluctuation as:

plr.y,z) = ¢(y, 2) cos(kz). (2.5)

6



where k is an as yet unknown axial wavenumber. The equation for ¢(y, 2z) may then

be written
Vie+ B4 =0. (2.6)
where
2 2
7i- (3 a)
and
p* = (M} - 1)k?, (2.7)

with ¢ = 0 on So(y.z) = 0. This is an eigenvalue problem with k as the eigenvalue,

which is to be determined.

Consider an arbitrary domain as shown in Fig. 3 where the boundary is divided
into N panels. £ = (a1, az) are the locations of the node points and o = afb;, b2)

are the locations of the mid points of each panel.
Let F(x | y) be the fundamental solution of the Helmholtz equation, i.e.
(Vi + B8 F(x|y) = —é(x-v), (2.8)

where, x = (z1,z2) and y = (y1,y2) and x and y are arbitrary, and é( ) is the

Dirac delta function. Then,
_ L o(1)
Fix|y) = ZHG (B1x —¥l). (2.9)

Application of the divergence theorem and noting that ¢ satisfies eqn. (2.6) and is

zero on the boundary yields.

1 . o o
5¢(a,)_'/$”:0 68 p(o, | )i (2.10)



Approximating 8¢/dv by a constant, say g; on each arc I';, we obtain,

A’
|
S6le) = ggj . F(n, | €)do. (2.11)
or,
L N
2(25((11) = Zﬂij(ﬂ) gy, (2.12)
=1
where,

Fla; | &) do. (2.13)

Jii;
r,

(7) =
In eqns. (2.10) to (2.13) 7 = 1,2...., N.

The approximate eigenvalues 3 are obtained {rom,
detlﬂi‘j]NxN = (). (2.1'1)

It now remains to set up the elements of the matrix ;. When ¢ = j the integrand
contains a singularity and so the evaluation of the integral in p;; must be performed

carefully. We obtain:

o i) (L L </11_J.>
Ntt(ﬂ)—4lL1Hn ( 2 >+ 2 [Hn 2

() m (g ()]}

where L; is the length of the panel on the arc I';, and Ho and H; are Struve

(2.15)

functions of order 0 and 1 respectively, that can be expressed as a series of Bessel

functions. When ¢ # j the integrand is smooth and the evaluation of the integral
in p;; may be obtained using Simpson’s rule.

wis(B) = Z{ b [Hé”(ﬁtai - &1)

(2.16)

+ 41{}11)(,3](11 — ajf) + H}\l)(;;@, ~ 51+1|)} }



The eigenvalues are obtained by a local iterative scheme which is given by,
Besr = B — 1/ f{Bk). (2.17)

where,

f(Bi) = Trju™" (Bi)u' (Bl (2.18)

Tr denotes the trace of a matrix and a prime denotes the derivative of the matrix
with respect to fix. Thisis Newton's method written in a convenient form for matrix

operations. Thus the eigenvalues can be determined starting from an initial guess.
2.2 Continuous Mean Profiles

When region Il of Fig. 1 is of finite extent a nu merical solution must be obtained
in the mixing region. The general form of separable solution for the fluctuating
pressure when the mean velocity and density are taken to be independent, locally,

of the axial distance is given by,
p(r.6,z.t) = p(r,8) expli(kr — wi)], (2.19)

where w is the radian frequency and a polar coordinate system has been introduced.
The shock-structure may be associated with the zero frequency solutions, i.e. w = 0.
The pressure fluctuation is found to satisfy the non-separable form of the Rayleigh

equation [12],

8%p 19p 19%*% 2k all dp
-+ et =
9r?  rdr r2062 (w-kU)|dror
| ol 95 (2.20)
p 2 2 2] 5
S R - v kU7 =0.
Y, ao] e

For simplicity the flow has been assumed to be isothermal but the variations in

mean density may be readily included using a Crocco’s relationship.
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For an arbitrarily shaped jet U is a function of both r and 6. Thus a separable
solution in r and @ is not generally available and one resorts to a numerical solution
in region I1. Along the interior edge of this region and in region I, the potential core
of the jet, the mean velocity is a constant, U;. In the ambient fluid surrounding the
jet the properties are also uniform. In this case we take the exiernal velocity to be
zero. Thus on the boundaries between regions I and 11, and 11 and 111, a separable

form of solution may be obtained and can be written,

e o]
Py = Z AnJdn(tAjr) exp(ind), (2.21)
n—-—00
and,
po= 3 BuH(idar) exp(ind), (2.22)
n=—-—0o0
where
2=k - ME(w - kU, (2.23)
and,
A2 = k? — M}w?®. (2.24)

The subscripts j and O refer to the solutions in regions | and 111 respectively. Jn is
the Bessel function of the first kind and order n, and H,(,” is the Hankel function

of the first kind and order n.

For region II the solution may be obtained numerically using a finite difler-
ence scheme. The region is divided by N radial lines. If the mean flow possesses
symmetry abouf any coordinate directions the numerical integration need only be
performed in a limited sector. For example, il the mean flow is symmetric about
both the y and z axes the numerical integration is performed in the first quadrant.

This would be the case for the elliptic or rectangular jets. The derivatives with

10



respect to @ in eqn. (2.20) are approximated by a three-point central difference for-
mula. Equation (2.20) then gives a system of coupled ordinary differential equations
for the values of j along the radial lines. The values of j along the bounding radial
lines depend on whether the modes sought are odd or even about the boundaries.
In the the former case p is zero on the boundary, in the latter case 95/ is set to

Zero.

The numerical solution is started at the interior boundary with one term from
a finite series of the form (2:21). The values of n are chosen to be compatible with
the modes sought. For example, n = 2m for modes that are periodic in 7 such as
the axisymmetric mode in the circular jet case. The solution is repeated for each
term in the series as the starting condition. A corresponding set of solutions is
started along each of the radial lines at the exterior boundary. The sets of solutions
are matched at some intermediate value of radius. For example along any radial

line at the matching point,
Y Anpni =) Bapuir, (2:25)
n n

and

AnPrnr = ZBnPnlh (2.26)

n

where pn; and pn;; denotle the numerical solutions started at the interior and exte-
rior boundaries respectively with starting conditions for the n-th term in the series,
and primes denote the derivative with respect to r. Application of these matching
conditions along each of the N radial lines gives 2N homogeneous equations for the
2N unknowns A, and B,. These equations may be written in matrix form. The

eigenvalue is obtained by minimizing the determinant of the resulting matrix.
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3. Calculations

Calculations have been performed for both the vortex sheet case and the jet
mixing layer of finite thickness. In the former case the circular, rectangular, and
elliptic jets have been considered. Comparisons have been made between the pre-

dictions, analytical results and experimental data where possible.
3.1 Vortex-Sheet Shock Cell Model

The shock spacing is given by the wavelength A. associated with the lowest
eigenvalue k. For a circular jet the analytical result for g, given by eqn. (2.7), was
given by Tam and Tanna |16]. It corresponds lo the first zero of the Jo Bessel
function. To determine the accuracy of the boundary element method, calculations
were performed for the circular jet case with various numbers of panels. The results
are given in Table I. The numerical result is within one percent of the analytic result
for 20 panels. Thus in all subsequent calculations the number of panels is fixed at

20 unless noted otherwise.

Tam and Tanna [16] noted that the dimensions of the vortex sheet to be used
when comparing with experimental data should be those of the fully—expanded jet
and not those of the jet nozzle itself. The ratio of the areas of the fully-expanded
jet and the nozzle may be obtained from one-dimensional isentropic flow formulas.

That is,

=1 Aq2 %
Ay My {1+ > MJ}

P [ 3.1
Ad My |1+ I2M7 (3:1)

where My and M; are the nozzle design Mach number and fully-expanded jet
Mach number respectively and Aq and A; are the areas of the nozzle exit and the

fully-expanded jet respectively. For a circular jet the ratio of the radius of the

12



fully—expanded jet to the nozzle radius is given by the square root of eqn. (3.1).
For non-circular jets further assumptions must be made. Tam [5] assumed that
the jet expands or contracts by an equal amount about its perimeter. Approximate
formulas may then be found for the dimensions of the fully—-expanded jet. For the
cases of the rectangular and elliptic jets these formulas are eqns. (2.42) and (2.43) of
reference 5. Alternatively the shape of the jet cross—section could be assumed to be
unchanged in the expansion so that the ratio of the characteristic dimensions of the
fully-expanded jet to the nozzle is once again given by the square root of eqn. (3.1).
However, though without any conclusive experimmental evidence, the mixing in the
initial mixing region near the nozzle might be more likely to move the jet to a more
symmetric form, i.e. a lower eccentricity in the elliptic case. This trend is given by
Tam’s formulation , al least in the under-expanded case. This formulation has been
used mostly in the subsequent calculations. However some predictions based on the
assumption of no change in the jet geometry have also been made. For the elliptic
jet the formula for the fully-expanded jet dimensions should be written correctly

as.

=l —==-1| —=—+1, 3.2
Ly {Ad ] 2E(e?)Lq4 N (3:2)

where L, refers to the fully-expanded jet scales and L refers to the nozzle exit scale.
E(s) is the complete elliptic integral of the second kind and €2 = (1— L%/L2), where

L, and L; refer to the semi-major and semi-minor axes of the nozzle.

For the elliptic jet the shock spacing is given by {5],

Ae = 7a (M,?' - 1)/Vgqa1. (3.3)

where go; is the smallest root of the modified Mathieu function Ce,nm (#0,gmn), and

o= /L4 - Lk po = tanh™ ' (La/LB), (3.4)
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where L4 and Lpg are the lengths of the semi-major and semi-minor axes of the
fully-expanded jet. Tam [5| gave approximate values for the roots in the limits
of very small and very large eccentricity. In the present calculations the roots
have been determined numerically using the Mathieu function routines described
by Morris [14]. These calculations confirm the asvmptotic formulas given by Tam.
In addition calulations have been performed for an elliptic jet with nozzle axis
ratio Ly/Lp = 2. This corresponds to the nozzle used in recent experiments at
NASA Langley [17]. Figure 4 shows the calculated shock spacing as a function
of fully-expanded jet Mach number for the 2:1 clliptic nozzle. The design Mach
number of the jet is 1.5. The shock spacing is referenced to the semi-minor axis
of the nozzle. The numerical results (for N=20) agree well with the analytic result
given by eqn. (3.3) with the zeroes of the Mathieu function evaluated numerically.
It should be noted that an axis ratio of 2:1 only occurs at the ideally—expanded
condition. For M, = 1.1 the fully-expanded axis ratio is 2.2278 and for M; = 1.8

the ratio i1s 1.7753.

A relationship between the shock spacing in the jet and the screech tone fre-
quencies has been developed by Tam, Seiner and Yu [18] based on a “weakest link”

hypothesis. The screech tone frequency is given by the simple formula,

ucky
y = _ \ 3.5
S 27 (1 + uc/an) (3:5)

where k; is the smallest wavenumber of the shock cell system, u. is the convection
velocity of the e-xcit,ed Jarge scale instability waves of the flow and aoo is the ambient
speed of sound. The same formula was developed by Powell [19] and Harper-Bourne
and Fisher [20] using a different model. In the calculations it has been assumed that

the convection velocity is 0.7. This assumption was found to be satisfactory in [18]
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though it may not be generally valid. Though other values have been proposed for
the convection velocity the present choice is an adequate approximation. It should
be noted however that the convection or phase velocity for the instability wave that
achieves a maximum amplitude in the jet shear layer may be calculated from the
stability analysis (for realistic mean velocity and temperature profiles). Figure 5
compares the predicted screech tone frequencies from eqn. (3.5) with the measured
values. The smallest wavenumber was obtained from the boundary element calcu-
lations shown in Fig. 4. The agreement between the predictions and measurements
is very good. It is interesting that the experimental data and the predictions ap-
pear to agree best close to the design Mach number. This would suggest that the
discrepancies between the predictions and the experiments are related to the choice
of dimensions for the fully-expanded jet. Preliminary measurements [17] of the
velocity profiles in the Mach 1.5, 2:1 elliptic nozzle at NASA Langley indicate that
the ratio of the axes, based on the half-velocity points, remains constant for the
first two potential core lengths. Also shown in Fig. 5 is the predicted screech fre-
quency where the aspect ratio of the fully-expanded jet is taken to be the same as
the nozzle. The area of the fullv-expanded jet is given by the one-dimensional gas
flow equations. The agreement between the predictions and experiment is better in
this case particularly at the over—expanded conditions. It is not clear whether this

assumption would provide betler predictions for all exit geometries.

The circular and elliptic jets have smooth boundaries. As an example of a
case with sharp‘corners we consider the rectangular nozzle. The analytic solutions
in this case are obtained very easily using the eigenfunction expansion approach
and the formulas for the shock spacing and screcch frequencies are given by Tam

[5] [eqns. (2.44) and (3.2)]. Figure 6 shows a comparison between the numerical

15



results for the shock spacing obtained using the boundary eleinent method, Tam’s
analytic results (based on the assumption of large aspect ratio), and Powell’s [21]
experimental results. The agreement between the sels of data is quite reasonable.
For these calculations, in which the aspect ratio of the jets is large, 34 panels were

used in the boundary element calculations.

Figure 7 shows a comparison of the predicted screech frequencies using the
analytic and numerical results and the experiments of Krothapalli et al [22]. As
expected the agreement between the predictions and experiments is good. Once

again 34 panels were used in the calculations.

It should be noted that at the higher pressure ratios strong shocks exist in the
plume and the geometry of the plume changes with downstream distance. This
results in the eventual switching of the major and minor axes. The good agreement
between the predictions of the vortex sheet model and the measurements would
suggest that the fundamental wavelength of the jet is relatively insensitive to the
effects of finite mixing layer thickness, jet growth, and non-axial velocity compo-

nents. This is also indicated by the calculations given in the next section.
3.2 Continuous Mean Profiles

As a demonstration of the effect of finite thickness on the shock spacing cal-
culations were performed for a circular jet. Clearly this case could be examined by
using the separéblc form of solution and integrating along a single radial line. In
fact this calculation has been performed to test the numerical accuracy of the gen-
eral scheme. However the purpose of the example was to test the general approach

and calculations for other geometries must await mean flow data at high speeds.
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The calculations were performed with three evenly spaced radial lines in the

first quadrant. The mean velocity profile was taken to be,
U(r) - U, exp[- In(2) 0. (3.6)

where n = (r — h)/b. h is the potential core radius and b is the local half-width of
the jet mixing layer. The relationship between s and b may be obtained from an
integral form of the axial momentum equation (see for example, Tam and Morris
[23]). The jet was assumed to be isothermal. The integration of the system of
ordinary differential equations in the radial direction was performed using a fixed
step size fourth-order Runge-Kutta scheme with only 20 steps in the integration
region, 0 < n < 3.0. This relatively small number of steps appeared to be adequate
when compared with the results using a variable step-size scheme that used several

hundred steps.

Figure 8 shows the variation of the shock spacing, based on the lowest wavenum-
ber, as a function of the mixing layer thickness. The jet Mach number M; = 1.4.
The wavelength is relatively independent of the mixing layer thickness though the
shock spacing does decrease as the thickness increases. For small values of b the
spacing approaches that given by the vortex sheet model. Only the lowset wavenum-
ber associated with the axisymmetric mode has been sought. Higher axisymmetric
modes exist corresponding to the zeroes of the Jn Bessel function in the limit of
the vortex— sheet. Tam, Jackson and Seiner |15] showed that when the contribu-
tions from all these modes are superimposed a remarkably detailed prediction of
the pressure distribution. associated with the shock structure, may be obtained. A
similar result could be obtained with the present method for other jet geometries.

However, it should be noted that Tam et al’s calculations included the dissipative

17



effect of the shear layer turbulence through an eddy viscosity. This results in an
axial decay of the strength of the shocks. No such decay would be obtained with
the present formalism. However the inclusion of the viscous effects would simply
convert the equation satisfied by the fluctuations from the Rayleigh equation to an
Orr-Sommerfeld equation and the numerical analysis would proceed in a similar

fashion.

The method developed in this section is being applied by the authors to other
more complicated geometries than the circular jet. There are several modifications
to the numerical procedure which make the calculations more efficient in jets with
high aspect ratios. However the basic principle of matching the linearly independent
solutions along radial lines is the same as described here. These calculations will be
presented later. The present calculations have served to validate the basic technique
and also to demonstrate the magnitude of the effect of finite mixing region thickness.
It can be seen from the present calculations that the vortex-sheet approach provides
a remarkably good prediction of the shock spacing when compared with the more

realistic results for the finite thickness mixing layer.
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4. Summary

This paper has given the formulations for the calculation of the shock cell spac-
ing of single jets of arbitrary geometry. Methods have been given for both vortex
sheet models of the jet shear layer and for continuous mean profiles. The vortex
sheet calculations for the single jet were performed using the boundary element
method. This enabled the shock structure to be predicted in jets of arbitrary ge-
ometry. Calculations have been given for circular, rectangular and elliptic jet cases.
The effect of finite mixing layer thickness on the shock spacing has been predicted
using a finite-difference solution in the mixing layer. The shock wavelength has

been found to reduce as the mixing layer thickness increases.
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Analytical value of J = 2.40482

Number of panels Bruumerical
8 2.5860
12 2.4765
20 21287
30 2.4151
40 2.4100

Table I. Boundary Element Calculations for a Circular Jet.



Figure Captions

Fig. 1. Sketch of Regions of Jet Cross Section.

Fig. 2. Sketch of Vortex--Sheet Shock Cell Model.

Fig. 3. Sketch of Boundary Divided into Elements.

Fig. 4. Variation of Shock Spacing with Fully-Expanded Jet Mach Number for
Elliptic Jet. L,/L, = 2.0. ——- . present calculations, N = 20;+ , analylic soution,
[5].

Fig. 5. Variation of Screech Tone Frequency with Fully-Expanded Jet Mach Number
for Elliptic Jet. L,/L, = 2.0.——- |, present calculations, N = 20; * , analytic
solution, [5}; A , experimental values, [17]; - - - - , present calculations assuming
constant jet aspect ratio.

Fig. 6. Variation of Shock Spacing with Fully-Expanded Jet Mach Number for
Rectangular Jet. ——- | present calculations, b/h = 5.83, N = 34; % , analytic
solution, [5}; A , experimental values, b/h = 5.83. [19].

Fig. 7. Variation of Screech Tone Frequency with Fully-Expanded Jet Mach Number
for Rectangular Jet. ——- . h/h = 50/5, - - - - . b/h = 50/3, present calculations,
N = 34; * , analytic solution, |5]; experimental results, |20, &, b/h = 50/3,03,
b/h = 50/5.

Fig. 8. Variation of Shock Spacing with Mixing Layer Thickness for Circular Jet.
M, =14.
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INSTABILITY WAVES IN TWIN SUPERSONIC JETS

Philip J. Morris
Department of Aerospace Engineering
Penn State University

University Park, PA 16802 USA

Calculations are presented for the characteristics of instability waves in the
initial mixing region of twin circular supersonic jets. Two models for the basic
jet flow are used. In the first, the jets are modeled as two circular vortex sheets.
In the second, realistic velocity and density profiles are used. It is shown that
the unsteady flow fields of the two jets do interact before the time-averaged jets
flows have merged. The normal modes or instability waves are classified by their
symmetry proper'ties in the twin jet case and their asymptotic behavior for large jet
separations. Calculations of the growth rates and phase velocities are made for these
modes as a function of jet separation and mixing layer thickness. The associated
pressure distributions are also presented. In the realistic jet profile calculations the
effect of jet separation is found to be relatively weak. For modes that are even
about the symmetry plane between the two jets the pressure levels are found to

increase near this plane as the jet separation decreases.



1.0 Introduction

When supersonic jets from convergent-divergent nozzles operate at off-design
conditions they can produce intense screech tones. Powell (1953) made early ob-
servations of this phenomenon and proposed a feedback mechanism for the screech
tone production. More recent experiments and analysis by Tam, Seiner and Yu
(1986) showed that the feedback loop consists of downstream propagating large
scale structures in the jet mixing layer that interact with the shock cell structure
to generate upstream travelling acoustic waves. If these acoustic waves trigger ad-
ditional flow disturbances at the jet lip with the correct phase then the feedback
loop is established. Analyses, based on this model, have made excellent predictions
of screech tone frequencies in both circular and non—circular jets; see Tam (1986)

and Morris, Bhat and Chen (1989).

Seiner, Manning and Ponton (1988) showed experimentally that for two closely-
spaced supersonic jets, operating off-design, the dynamic loads associated with
the screech tone can reach levels, upstream of the jets’ exits that could result in
structural damage. Tam and Seiner (1987) noted that the screech tone frequency
of the twin jets was slightly different to that of the single jet and that the acoustic
intensity in the inter-nozzle region exceeded that of the direct sum of two non-
interacting screeching jets. This suggests that there is a strong interaction between
the unsteady flow and acoustic fields of the two jets. The analysis and calculations
described in this paper help to quantify the effects of jet separation and operating

conditions on the nature of this interaction.

Turbulent mixing in free shear flows is controlled by the dynamics of large scale
coherent structures. The local characteristics of these structures may be described

by linear instability theory. This has been demonstrated by the experiments of
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Gaster, Kit and Wygnanski (1985), and Petersen and Samet (1988) among others.
In their experiments they compared predictions of the amplitude and phase of the
axial velocity fluctuations, based on linear stability theory, with phase-averaged
measurements in an excited shear layer and a jet. The agreement between predic-
tions and experiment was very good though only the local distributions and not the
amplitude were predicted. This close agreement between the predictions of linear
stability theory and the properties of the large-scale coherent structures has formed
the basis for theories of turbulent mixing and supersonic jet noise. For example,
Tam and Morris (1979), and Tam and Burton (1984a,b) predicted the noise radi-
ation from instability waves in supersonic shear layers and jets and obtained very

good agreement with experiment.

For supersonic jets the three main components of noise radiation are, turbulent
mixing noise, broa'dba.nd shock associated noise and screech. In each case, the
essential component of the turbulence responsible for noise generation are the large
scale structures. It should be noted that this is not the case for subsonic jets where
a complete theory for noise generation and radiation is not available. Tam (1987)
showed how predictions could be made for each noise component in a circular jet

using an instability wave model for the large scale structures.

In the present paper the properties of the instability waves or large scale tur-
bulent structures in the initial mixing region of twin circular supersonic jets are
determined. Two models for the basic jet flows are used. In the first, the jets are
modeled as two circular vortex sheets. In the second, realistic mean velocity and
density profiles are used. Though the former model fails to provide quantitative
results it does help to explain the observed modes of instability and interactions

predicted by the more realistic model. The calculations examine whether the in-
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stability growth rates, and hence the amplitudes of the large scale structures, are
modified as the jet separation and operating conditions vary. In addition, the cor-
responding changes in the instability wave phase velocity are predicted. It is shown
that the unsteady flow fields associated with the instability waves do interact be-
fore the time—averaged jet flows have merged. However, this interaction is relatively
weak for the operating conditions considered. In Section 2 the general equations of
motion and analytic solutions common to both models are developed. The details of
the vortex sheet model and its predictions are then described in Section 3. Section
4 contains the numerical procedures and calculations for the realistic jet profiles.
Finally, the role of these predictions in and their relationship to experimental ob-

servations of the twin plume resonance phenomenon are discussed.

2. ANALYSIS

Consider the two circular jets shown in Fig. 1. The time-averaged jet flows are
assumed to be symmetric about the z — z and z — y planes, where the z—coordinate
is normal to the jet exit planes. The centers of the jets are separated by a distance
2h. Throughout this analysis the variables are non-dimensionalized with respect
to the jet velocity u,, jet density p; and jet radius a;. These values are taken to
be the fully—expanded jet properties as defined by Tam and Tanna''. These values
are described below. In the annular mixing regions of the two jets, before they have
merged, there are three fiow regions. In region I, the potential cores of the jets, the
mean velocity and density are constant. Region III represents the stationary fluid
surrounding the jets. In region II, the annular mixing region, the mean velocity #
and density p are variable. Polar coordinate systems are introduced (r,,6,) and
(r2,8,) with origins on the jet centerlines. The mean velocity and density of each

jet are assumed to be a function of their radial coordinates only. This is the locally-
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parallel flow approximation. The potential cores have radii R, and the outer edges
of the mixing regions have radii R,. The mean static pressure is assumed to be
constant. The large scale coherent structures are modeled as instability waves.
Their behavior is governed by the unsteady, linearized, compressible equations of
motion. Thus, for example, in either polar coordinate system separable solutions

for the pressure fluctuation are sought in the form:
p(z,t) = p(r) expli(kz + nd — wt)}, (2.1)

where k is an axial wavenumber, n is an azimuthal mode number, and w is a radian
frequency. The radial variation of the pressure fluctuation is then found to satisfy

the equation:

d*p 1 1dp 2kduydp n?
_r AR St ihatni kil k2 — 5P M2 —}‘:O, 2.2
dr2+{r b‘dr+ﬂdr}dr+{ My + 5P (2.2)
where,
1 =w — kT,

and M? = u?/c2, where ¢, is the fully—expanded jet speed of sound. Equation (2.2)

reduces to Bessel’s equation in regions of constant mean velocity and density.

A solution for the pressure fluctuations outside the jet mixing layers in region
IIT may be obtained in either polar coordinate system in the form
p(r,0,z,t) = Z B, H(V (1,7) expli(kz — wt + nf)], (2.3)

where,

Ao = {k? = Bow? M2},

P, is the non-dimensional mean density in the ambient medium which is equal to

the jet static temperature ratio, 7, /To. The branch cuts for Ay are chosen such
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that,

1 1
—§7r < arg Ay < §7r.

This ensures that the solutions decay as r — oo or are outgoing waves, for positive
frequency. The symmetry properties of the mean velocity and density field, for

example,

ﬁ(y,z) = E('—yﬂz) = E(y)_z)

indicate that the eigensolutions should be odd or even about the z —y and z — z
planes. From the latter symmetry property (the former symmetry property is used
below) the general solution for the pressure fluctuations in the outer region may be

written,

p(rira,0:,02,2,t) = ) B,,{H,g”(i,\orz)e""“
S (2.4)

+ HY (1hgry )ern (=01 } expli(kz — wt)],
where the choice of sign depends on whether the solution is to be odd or even about

the £ — z plane of symmetry.

It should be noted that this solution does not just represent the sum of the
contributions from two, non-interacting, individual jets, though the form could then
be the same. It is simply a convenient form of the separable solution in the outer
region. The influence of the second jet is included when this general form of outer
solution is matched with the solution in the interior of each jet. In the present case
the fluctuations in each jet are affected not only by the outgoing solutions, that
would exist for an individual, isolated jet, but by the incoming solutions from the

second jet. These two contributions are included in the outer solution (2.4)

In order to match the outer solution (2.4) with the pressure fields in regions I

and II it is convenient to write the solutions in region III in terms of only one of
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the two polar coordinate systems. This may be accomplished using Graf’s Addition

Theorem [see, Tranter(1968)]. For example, we may write,

HO (idor,)em =00 = Y H) (2020h)J, (or3)e . (2.5)
Then (2.4) may be written,
p(r2,0;) = Z e Z B,B,.(1Xhor2), (2.6)
where,
Bon(§) = 6, B (€) £ .Y, (2020 h) . (€), (2.7)
and §6,, is the Kronecker delta function. It should be noted that
ﬂ—n,—n = (_1)‘ﬂ-na (280’)
and,
ﬂ—a,n = (—1)‘ﬂl,—ﬂ' (28b)
The influence of the second jet is seen in (2.7). The first term on the right
hand side represents the outgoing waves from the jet at y = —h. The second term

represents the incoming waves from the jet at y = h. For large h this latter term is

very small and the interaction between the jets is very weak

The normal modes for the pressure fluctuation given by (2.6) may be separated

further into modes that are odd or even about the z —y plane. This is accomplished

by first setting s = —s and n = —n and adding the resulting equation to (2.6). Then

the pressure fluctuation may be written,

p(ry,6;) = Z Z [F cos(nb,) + :G, sin(nbz)| B, (tAor2),

8= — oo

(2.9)



where,

F, =|B, +(-1)B..]/2, (2.10a)

and,

G, =B, - (-1)'B_,} /2, (2.100)

A similar solution may be found for the pressure fluctuations in the potential core

region. This may be written,

p(rz,0;) = Z [A cos(nf,) + iC,,sin(nHQ)]Jn(iAlrz), (2.11)

where,

X = k? — (w - k)2 M2, (2.12)

J

With the form of the solutions known inside and outside the jet the eigenvalues &
may be determined by matching these solutions at either the vortex sheet location
or through the finite mixing layer. The former matching is described in the next

section.
3. VORTEX SHEET MODEL
3.1 Analysts

In this representation of the jet flows the finite mixing layers are replaced by
cylindrical vortex sheets of unit non-dimensional radius. Across the vortex sheet we
require continuity of pressure and particle displacement. The matching conditions

require that,

dp/dr,
A [——ﬁ—n—z——} =0 and Alp] =0, (3.1)
where A| | denotes the change in the argument across the vortex sheet. If the

interior solutions given by (2.11) are matched with the exterior solutions, (2.9) for
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all n we obtain, for the solutions that are even about the z — y plane,

i F {5, 0 T4 (i03)Bun (3) = (w0 = B Ao, (i0)B. () } = 0,

8a=0C0

(3.2)

n=-—00,"",00,

where,

B (&) =6.HY ()£ H)

n+tas

(260 k)T (). (3.3)

If we use the symmetry properties of ,,, given by eqns. (2.8), and note that,
F, = (-1)'F_,, (3.4)
then the independent equations yielded by (3.2) may be written,

iF, (Lot & [B), (2006h) + (~1) B, (20h) | }

(3.5)
+F, {rnéon iH,gl)(zi,\oh)} ' n=0 1, 00,
where,
H(l) ) — A H(l), A\
I\ — n (1 O) nddn (l o) (3.6)
RGO E AT
and,
A = (w— a)? Ao J, (TA;) (3.7)

Pow? A J! (1)
In the numerical calculations the series is truncated at s = N and then (3.5) yields

a set of N+ 1 homogeneous equations for F,. These may be written in matrix form,

[AJF =0, (3.8)

where F is a vector of length N +1 of the unknown coefficients F,. For a non-trivial
solution to exist the determinant of this matrix must be zero. This provides the

dispersion relationship between the wavenumber and frequency.
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A similar set of equations may be derived for the unknown coefficients in the
series representing the solutions that are odd about the z — y plane. These may be
written,

F, =(-1)'F_,, (3.4)

then the independent equations yielded by (3.2) may be written,

oo

S a, {rna,,, + [H;‘j, (26Aoh) + (=1) H'V, (2i,\0h)] }

s=1

(3.9)
n=201,--- ,00.
The requirement of a non-trivial solution for G, results in a dispersion relationship

for the odd modes about the z — y plane.

A similar expression to both eqns. (3.5) and (3.9) was obtained by Sedel’nikov
(1967). He developed dispersion relationships for multilayer jets, several jets, and
jets between parallel walls or in rectangular ducts. In each case the jet was repre-
sented by a vortex sheet. No roots of the dispersion relationship were determined.
Written in the form of eqns. (3.5) and (3.9) the off-diagonal elements vanish for
large jet separations and the eigenvalues are the zeroes of I',,. These eigenvalues

correspond to the axisymmetric and helical normal modes of a single jet.

It is clear that this form of the equations does not hold for zero frequency. This
case is of interest, as it may be used in a description of the shock cell structure of the
jet. Tam and Tanna (1982) showed how a model for the shock cell structure could
be posed as an initial-value problem in which the fully—expanded vortex sheet acts
as a waveguide for the pressure perturbation at the jet exit. For the steady problem
the matching conditions at the vortex sheet require that the pressure perturbation
be zero at and outside the vortex sheet. Thus there is no communication between

the two jets and the shock cell structure remains unchanged from the single jet case.

9



However, it should be noted that this is only true for jets into stationary air and
some coupling between the steady shock cell structure could occur if the ambient

air were in motion; see Morris(1988).
3.2 Calculations

There are many parameters and operating conditions that could be varied for
the present configuration. Thus, the calculations have been limited to a set of
operating conditions that correspond to available experiments. In the calculations
for both the vortex sheet and the realistic mean profile representation of the jet
the diameter of the jet is taken to be the fully- -expanded jet diameter. It may be
argued, that in either the case of an over— or under—expanded jet, the jet plume
will adjust its cross—section so as to preserve mass flux but equalize the mean static
pressure. This gives the following relationship, assuming isentropic flow, between

the fully-expanded and design jet dimensions.

+1

M~ 1+1—1M2 {r-1)
rg =4/ —={ —2 4% , (3.10)
My |1+ 252 M?

where r; is the non-dimensional design jet radius and M, and M, are the fully-

expanded and design jet Mach numbers respectively.

The instability wave calculations in the vortex sheet case provide an indication
of the character of the results to be expected in the more realistic calculations that
include the effects of finite mixing layer thickness. Four types of solution may be
classified as shown in Table 1. In addition, each solution may be classified by the

azimuthal mode number it approaches as the jets move further apart.

Figure 2 shows the variation of the axial growth rate, —k; as a function of
the separation distance between the two jets’ centerlines h. The instability wave

frequency is 1.0 in each case. This corresponds to a Strouhal number of 0.318,
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(1/7), based on the fully—expanded jet diameter and velocity. The design and fully-
expanded jet Mach numbers are 1.0 and 1.32 respectively and the jet is unheated.
These conditions correspond to the experiments of Seiner, Manning and Ponton
(1988). In the numerical evaluation of the dispersion relationships obtained from
(3.5) and (3.9) a value of N = 5 was used. Calculations were also performed with
N = 9 with no significant change in the calculations, even for small values of jet
separation. For large separations the solutions approach those for the single jet and
the growth rate increases with azimuthal mode number. Calculations are presented
for mode numbers 0, 1 and 2. For a given mode number the most unstable mode
type is a function of jet spacing. For example, consider the mode number 1. For
h > 1.6 the type III mode is the most unstable, though its value does not differ
greatly from the value at large h. For h < 1.6 the type I mode dominates. For
the range of mode numbers and types considered, the mode number 1, type I mode
appears to be most affected by small separations showing a large increase in axial
growth rate. This mode is associated with a motion that is even about both z — y
and z — z planes and is dominated by a pair of helical motions of opposite sense
about each jet. This is the type B mode described by Seiner, Manning and Ponton
(1988) which they found to be the dominant mode in their twin plume resonance

experiments.

The prediction that the stability of the (1,I) mode is affected strongly by the jet
separation and the interchange of dominance between modes of different types as the
jet separation changes is encouraging, as it provides qualitative agreement with the
observations of Seiner, Manning and Ponton (1988) and Wlezian (1987). However
these results should be treated with some caution as they are based on the vortex

sheet model for the jet. The dominant or preferred mode of a real jet is determined
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by the total growth of a given frequency disturbance through the developing shear

layer. In the next section more realistic profiles are used to describe the jet flow.
4. REALISTIC JET FLOW MODEL

4.1 Analysis

In this case the mean velocity and density vary in Region Il in a smooth, real-
istic manner. The matching between the potential core and ambient flow solutions

must be performed using a numerical solution in the mixing layer.

In the potential core the solution for the pressure fluctuation takes the form
given by (2.11). Consider, for example the modes that are even about the z — y
plane. For n = —oo, - -+, co (2.2) may be integrated from r = K, tor = R, with
initial conditions,

~

; .
p=J,(i\;R)) and ——dp=i)\1J,’|(i,\1Rl). (4.1)
T

The corresponding numerical solutions at r = R, are denoted by p, and p,,. These

solutions may be matched with the exterior solutions for all n. That is,

Anijn = Z Ftﬂon(iAO&), (42)
and
Acfl = D iXFEB, (o Ry). (4.3)

Following the same approach used in Section 3, based on the symmetry properties
of p., B.. and F,, a dispersion relationship may be derived from an identical system
of equations to (3.5). However, in this case the I';, and A, are defined by,

r o HV (R - A HM (020 Ry)
" T (MR - AT (FA Ry)
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and,

A, =1XP, /D, . (4.5)

For modes that are odd about the z — y plane the dispersion relationship may be

obtained from (3.9) with T, and A, defined by eqns.(4.4) and (4.5) respectively.
4.2 Calculations

In the subsequent calculations it is assumed that the mean velocity and density
of the jet flows take the same form as in the single jet case: up to the location where

the jet edges meet. The mean velocity is assumed to take the form:

_ 1 r < g(z)
u(r,z) = { ) (4.6)

exp [~1In(2)n?] r>g(z).
where,

n = [r — g(z)]/b(). (4.7)

g(z) is the radius of the potential core and b(z) is the half-width of the mixing

layer.

The mean density is related to the mean velocity through a Crocco relationship,

5= ——(7;1)5(1—5)M}+U+To(1—ﬂ) _1, (4.8)

where T, is the non-dimensional ambient temperature.

From the mean axial momentum integral equation a relationship may be found

between the potential core radius and the half-width of the mixing layer,

g(z) = —Bib+\/6(82 — 262) + 1, (4.9)

where,
ﬂl =/ 552(177,
0
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and

B, =/ P undn.
)]

At some axial location the edges of the two jets will touch on the symmetry
plane and the present analysis, that assumes that the mean flow is axisymmetric
relative to each jet’s centerline, is no longer valid. In the present calculations the
edge of the jet is taken to be the location at which the axial velocity given by (4.6)
equals 0.01. This corresponds to a value of n of 2.58. Thus the prcsent calculations

are for values of jet thickness such that,

g(b) +2.58b < h. (4.10)

A variable step-size fourth-order Runge-Kutta algorithm is used to integrate
(2.2) from the edge of the potential core to n = 2.58. This gives the values of f, and
.. As in the vortex sheet calculations the upper limit in the series' representations
is taken to be N = 5. Calculations have also been performed with N = 9 with

negligible change in the largest elements of F, or G,.

The vortex sheet calculations, shown in Fig. 2, indicate that for large separa-
tions the higher azimuthal mode numbers have higher axial growth rates. Addi-
tional calculations show that, for the present operating conditions, the maximum
axial growth rate occurs for n = 3. A similar result is obtained for small values
of local thickness b(z). However, as the jet mixing layer thickens, the higher order
azimuthal modes become damped more quickly. Figure 3 shows the variation of
the axial growth rate —k; as a function of thickness b(z) for a large jet separation
h/rq = 5.0, for the first three azimuthal modes. In this and subsequent calculations
the fully-expanded jet Mach number is 1.32, the design jet Mach number is 1.0, and

the jet is unheated. Figure 3 shows how the growth rate of the n =2 mode rapidly
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decreases. The helical mode n = 1 has a larger growth rate than the axisymmetric
mode n = 0 for the all values of jet thickness considered. In the subsequent calcula-
tions only the two lowest mode numbers will be examined. The calculations shown

in Figure 3 give results that are identical to the single jet case.

As the separation decreases so the growth rates of the various mode numbers
and types move away from their large separation value. Figure 4 shows this variation
for mode numbers 0 and 1 and the four mode types. The jet thickness is b = 0.2
and the Strouhal number St = 0.3. The change in the axial growth rate is relatively
small for jet separations greater than 2 radii. For these conditions the most unstable
mode at the closest separation achievable, before the jets’ edges merge, is the (1,IV)
mode. This mode is dominated by two helical instabilities that are out of phase
that give a solution that is odd about both the z — y and z — z planes. However,

at other separations other modes are the most unstable.

The relative instability of the various modes at a given separation has been
found to be nearly independent of jet mixing layer thickness. For example, Figure
5 shows the variation of axial growth rate with b(z) for the (0,I) and (0,III) modes.
The single jet, n = 0 value is shown for comparison. In this case, with h/re = 1.9,

the (0,III) mode is the most unstable at all jet thicknesses.

Before considering the eigenfunctions for the various modes of instability the
effect of wave frequency will be considered. Figure 6 shows the variation of axial
growth rate —k; with Strouhal number for the same modes shown in Fig. 5. The
mixing layer thickness b = 0.2. Except for the lower Strouhal numbers the (0,111)
mode is more unstable than the (0,]) mode or the n = O single jet mode. At
this jet thickness the most unstable frequency occurs for a Strouhal number of

approximately 0.45 and is relatively independent of jet separation or mode type.

15



The real part of the wavenumber is also affected by the jet separation. The
trend in all the cases considered involves an increase in kg for the even modes
about the z — z plane and a decrease in kg for the odd modes as the jet separation
decreases. However, the changes are relatively small involving typically a 10%
change from the single jet value. For example, Figure 7 shows the variation with
mixing layer thickness of the phase velocity, given by w/kg, for the same modes
shown in Figure 5. The phase velocity for the (0,I) mode, that is even about the
z — z plane is lower than the single jet or large separation value. Conversely, the
(0,III) mode, that is odd about the z — z plane takes a higher value. It should
be noticed that for larger thicknesses, where the instability wave is reaching its
maximum amplitude or neutrally stable condition, there is effectively no change in
the phase velocity. In this region the phase velocity is approximately 0.73. Thus the
observed shift in the screech frequency for the twin jets is linked to a change in the
shock cell spacing rather than a modification to the phase velocity of the large scale
structures. Seiner, Manning and Ponton (1988) did observe a 10 to 15% increase
in the shock cell spacing. The reason for this increase is unclear as, in the absence
of ambient flow, the shock cell structure of the two jets should be independent.
However, insufficient aerodynamic data for the twin jets is available at present to

help to explain this observation.

The pressure distributions associated with each mode of instability may be
constructed by obtaining the coefficients F, or G, for a given eigenvalue. An inverse

iteration technique is used to obtain these values. That is,
[AJF**+! = oFF, (4.11)

where o is a scaling factor and |A) is given by (3.8). An initial guess for F° is

taken to be {1,1,---,1}". This algorithm has been found to give convergence in
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two iterations for the cases considered. The interior coefficients may then be found

from (4.2).

For convenience in the present calculations only the pressure field outside the
edge of the jet has been determined. Equation (2.3), rewritten in terms of modes
that are odd or even about the z — y plane, is used to calculate the pressure. For
example, Figure 8 shows contours of equal pressure level for the (0,I) mode and
h/rq = 1.9. The phase, given by kz — wt in (2.4) has been set to zero. It can be
seen that the pressure field remains nearly axisymmetric. However, in the region
between the two jets there is a loss of axisymmetry. In this region the amplitude
of the pressure is nearly uniform and equal to the maximum amplitude achieved at
the edge of the jet. The shaded region shows the region of maximum amplitude.

This is the case for all the modes that are even about the z — 2z plane.

A measure of the azimuthal mode content for each mode of instability and type
is given by the relative magnitudes of the coefficients F, and G,. Table 2 shows how
these amplitudes vary with jet separation for the (1,III) mode. For each separation
the n = 1 helical mode is dominant. However, for h/ry = 1.5 the n = 0 mode
amplitude rises to 67% of that of the n = 1 mode and the n = 2 mode rises to 16%

of the n = 1 mode.
5. DISCUSSION

The present calculations have shown how the growth rates of instability waves
or large structures in the initial mixing region of twin supersonic jets are affected by
the jet separation. This interaction is caused by a coupling of the waves unsteady
flow fields even before the time-averaged jet flows have merged. At a given operating
condition the mode number and type that is most unstable is a function of the jet

separation. However, the quantitative change in the local growth rates are relatively
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small until the separation between the jet centerlines approaches the jet diameter:
that is h/ry — 1. Though this may be achieved in theory in the case of the vortex
sheet model, similar calculations for the realistic jet profiles are limited to very
small mixing layer thicknesses. At larger thicknesses the jets merge rendering the

present analysis invalid.

The influence of the jet separation on the eigenvalues can be seen from (3.5) to
(3.8). The elements of the matrix A consist of two components: those that depend
on h, the jet separation, and those that do not. In fact, the easiest way to construct
the matrix elements numerically is to first note that the components that depend
on h form a symmetric matrix. The other terms, that only occur on the diagonal,
may then be added. As the separation increases the relative magnitude of the terms
that depend on h decrease rapidly, as Hankel functions, relative to the remaining
components. Eventually, only the terms given by T',,, that occur on the diagonal, are
significant. The numerator in (3.6) can be seen to be the dispersion relationship for
azimuthal mode number n for a single jet. Thus the single jet eigenvalues constitute

the zeroes of the determinant of matrix A for large jet separations.

It should be noted that the amplitude achieved by an instability wave depends
on the integrated growth of the wave with axial distance and the local variation in
the shape of the eigenfunction. Thus, relatively small changes in the local growth
rate can result in large changes in the eventual amplitude of the wave. For example,
using the data shown in Fig. 5, and assuming that db/dz is given by the single jet
value for the same operating conditions, the amplitude of the (0,III) mode is 24%
larger for A/r, = 1.9 compared to h/ry = 5.0 at the location where the jets merge
in the former case. However, as mentioned earlier, the rate of spread in the twin jet

case may be decreased by the co-flowing, entrained air between the jets. This would
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increase the relative amplitude at the merger location. In addition, the pressure
levels between the jets are much higher in the twin jet case for modes I and II as
shown in Fig. 8. However, it is not clear whether changes of this order of magnitude
would be sufficient to explain the observed changes in the near-field pressure levels

when the twin jets resonate.

The present analysis has considered only a part of the feedback cycle associ-
ated with twin jet screech. The instability wave’s growth into the merged jet region
must be determined. In this region the merged jet would resemble more closely
a developing rectangular jet. In this case certain normal modes, particularly the
flapping mode about the z — y plane might be enhanced. The interaction between
the instability waves and the shock cell structure in the jet that gives rise to the
upstream propagating acoustic wave must then be described. It should be noted
that existing theories of jet screech are unable to predict the amplitude even for
single circular jets. Experimentally, the occurrence and amplitude of jet screech are
very sensitive to small changes in the detailed geometry of the jet model and labo-

ratory. So a prediction of the occurrence of resonance or its amplitude is extremely

difficult.

To assist in the extension of the present calculations to other sections of the
feedback loop further experimental data on the aerodynamic development of the
twin jets is required. This includes the modification to the rate of growth of the jet
mixing layers, mean flow contours in the merged jet region, and measurements of

the entrained flow between the jets.

Though the present analysis does not answer all the questions regarding the
complex phenomenon of twin jet resonance, it has shown how an instability wave

analysis can provide some insight into the interaction of twin supersonic jets.
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z — y plane z — z plane Mode
even even 1
odd even II
even odd II1
odd odd 18%
Table 1. Classification of Normal Modes.
Mode Relative amplitude
number
h/ry = 3.0 h/ry = 2.0 h/ry =1.5
0 0.016 0.199 0.199
1 1.000 1.000 1.000
2 0.001 0.098 0.155
3 0.000 0.008 0.019

Table 2. Variation in relative mode amplitude with jet separation, Mode (1,III).

M; =1.32, M, = 1.0, 5t =0.3, b=0.2.
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Figure Captions
‘Fig. 1 Schematic of twin jet cross section and coordinate systems.

Fig. 2 Variation of the axial growth rate —k; with jet spacing. M; = 1.32, M, =
1.0, St = 0.318. ——, Mode I; - ~ - —, Mode II; — - —, Mode III; ------ Mode

Iv.

Fig. 3 Variation of the axial growth rate —k; with jet mixing layer thickness.

M; =132, M; = 1.0, St =0.3,h/ry = 5.0. ,n=0; - - - -, n=1;, — - —
, n=2,

Fig. 4 Variation of the axial growth rate —k; with jet spacing. M, = 1.32, M, =

1.0, St = 0.3, b = 0.2. ——, Mode I; - - - -, Mode I[; — - - —, Mode III;
------ Mode V.

Fig. 5 Variation of the axial growth rate —k; with jet mixing layer thickness.
M, =132, My = 1.0, St = 03. ——, n =0, h/rs = 5.0; - - - -, (0.1},
h/rd = 1.9; —_— (O,III), h/rd = 1.9.

Fig. 6 Variation of the axial growth rate —k; with Strouhal number. M, =

1.32, M,; = 1.0, b = 0.2. For legend see Fig. 5.

Fig. 7 Variation of the phase velocity, w/kg , with jet mixing layer thickness. M, =

1.32, M; = 1.0, St = 0.3. ,n=0, hfrg =5.0; - - - -, (0,I), h/ry = 1.9;

— —— , (0,II]), h/ry = 1.

Fig. 8 Contours of equal pressure level, Mode (0,I). M; = 1.32, M, = 1.0, St =

0.3, h/ry =1.9. , outer edge of the jet. Contours from -.025 to -.175 in steps

of -.025.
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